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1 Introduction

Every month or so, the MAA (the same organization that writes the AMC, AIME, and
Putnam competitions) publishes the American Mathematical Monthly, which contains
expository and accessible articles, notes, and open questions for its readers. In the March
issue of 1967, Fred Richman and John Thomas asked:

“Let N be an odd integer. Can a rectangle be dissected into N nonoverlapping
triangles, all having the same area?”

It’s easy to divide a rectangle into N triangles of the same area, when N is even:

But they couldn’t find a way to do this with an odd number of triangles.

In the February issue of 1970, Paul Monsky delivered his proof that such a task was
impossible, using just a little more than 2 pages. In these notes, we’ll describe all of the
background you need to understand his proof. The proof has two key components:

1. Color the points of the unit square with 3 colors, such that any triangle with 3
differently-colored vertices has area with even denominator in simplest terms.

2. Prove that whenever the unit square is divided into an odd number of triangles, at
least one of the triangles must have 3 differently-colored vertices.

In what follows, we will prove a simpler version of (1) first, in which we will only
color the points of the unit square with rational coordinates (so no coordinates with

1/ \/5 or In(2), say). Then we’ll prove (2), from which we conclude that there is no way
to divide a square into an odd number of triangles when the triangles have rational
coordinates. Finally, we will sketch how to extend (1) to all real numbers.

Practice

Do these problems if you want to reinforce ideas and motivations from the main lesson.

1. You attempt to dissect the unit square into 5 pieces of equal area in two ways:

2/5 2/5

In each diagram, the triangle on the right has area 1/5, and the remaining 4
triangles have areas that depend on the labeled points. For each diagram, prove
that no choices for the labeled points, with edges as depicted in the picture, results
in every triangle having area 1/5.



2 Coloring the unit square

2.1 p-adic valuations

Our goal is to color the unit square so that something has area with even denominator.
The following concept from algebraic number theory will help us talk about this much
more easily:

Definition 2.1 (p-adic valuation).

« Let n € N be a positive integer and let p be a prime number. Let the prime
factorization of n look like n = p¥q where q is not divisible by p. Then the p-adic
valuation of n is

vp(n) = k.

« Letn € Z be an integer. Then for n # 0, we define

Up(l’l) = Up(lnl)a
and v,(0) = co.
« Leta/b € Q be a rational number with a,b € Z. Then we define

Up (%) =v,(a) —vp(b). r

In other words, a p-adic valuation of a number says how many times p is a factor,
which may be negative if it has p in the denominator. So v,(100) = 2 and v,(3/8) = —3.
A rational number x € Q has even denominator when written in lowest terms if and
only if v,(x) < —1.

Introducing this notation allows us to prove properties that help us calculate whether
a number has odd or even denominator. In particular, we have the following:

Proposition 2.2 (basic properties of valuations). Let p be a prime and x,y € Q.

L. vp(xy) = vp(x) + v, (V).
2. vp(x +y) 2 min(v,(x), v, (y)), with equality guaranteed when v, (x) # vp(¥).

Proof. Exercise. O

This result should be fairly intuitive: it should follow from your long-standing
intuition about multiplying and adding fractions. For example, we have the following
calculations:

75 3 3
-1 = Uz (7) = UZ (100 X g) = 02(100) + 1)2 (g) = 2 - 3 =-1

—3=0, (%) =0, (4 + %) = min <v2(4), Uy (%)) = min(2,-3) = -3

The inequality can be either equality or strict inequality when v,(x) = v,(y). For
example, v,(1/4) = —2 and v,(3/4) = =2, but v,(1/4 + 3/4) = v,(1) = 0. For p = 2, it
turns out that the inequality is always strict when v,(x) = v,(y), essentially because odd
plus odd is even. However, when p # 2, we can have equality for addition, for instance
v3(1/3) = —1land v3(1/3 + 1/3) = v5(2/3) = —1 still.

With that said, we now have all the tools we need to define Monsky’s tricoloring of
the unit square.



Definition 2.3 (Monsky’s tricoloring). We assign every point (x,y) € R? with rational

coordinates a color:

o red/X, if v,(x) < v,(y) and vy (x) <0,

« green/m, if v,(x) > v,(¥) and v,(y) <0,

 blue/e, if v,(x) > 0 and v,(y) > 0.

The following picture clarifies how this coloring gives every rational point a unique

color, as the conditions span all possible values of v,(x) and v,(y):
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Because the points are colored based on their valuations, i.e. the number of 2s in the

denominator, it does not look nearly as neat when visualized in the standard x-y plane.
In the picture below, we visualize all points of the form (m /30, n/30) in the unit square.
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Before we end, we make a few useful observations about this coloring that will be
useful later on, explaining the symmetries seen above.

Lemma 2.4 (symmetries in Monsky’s tricoloring).

1. Every (x,y) € R? has the same color as (—x,y), (x,—y), and (—x, —y).

2. Suppose (a,b) € R? is blue/®. Then for all points (x,y) € R?, the point (x,y) has
the same color as the point (x + a,y + b). y

Proof.

1. This is obvious, since valuations were defined such that v,(x) = v,(—x).

2. This is a direct application of Proposition 2.2. We show the case of (x, y) being
red/x and leave the remaining two colors as exercises.

We are to show that v,(x + a) < v,(y + b) and v,(x + a) < 0. First, we claim
that v,(x + a) = min(v,(x), v,(a)) (the equality case of Proposition 2.2.2). This
is just because v,(x) < 0 and v,(a) > 0, from the tricoloring definition. This also
gives 0,(x) < vy(a), so actually v,(x + a) = v,(x) < 0.

Meanwhile, v,(y + b) > min(v,(y), v5(b)). By the tricoloring definition again,
min(v,(y), v,(b)) > min(v,(x),0), and this is equal to v,(x) = v,(x + a) by above,
as was to be shown. O

Note that neither of these properties depended on fact that Monsky’s tricoloring used
p = 2. These properties would have been true for all prime p, but we want p = 2 to
eventually argue that a certain area has even denominator.

Practice

Do these problems if you want to reinforce ideas and motivations from the main lesson.

1. Suppose v,(x) < v,(y). Simplify v,(x* — y?).
2. Prove the proofs that we omitted.

(a) Proposition 2.2 (basic properties of valuations)
(b) The remaining two cases of Lemma 2.4.2 (symmetries in Monsky’s tricoloring)

3. Prove that the equality condition in Proposition 2.2.2 is an if and only if, assuming
p = 2. That is, if v,(x) = v,(¥), then vy(x + y) > min(v,(x), V(¥)).

Extensions

Do these problems if you want to explore new ideas related to the main lesson.

4. Some resources phrase Monsky’s theorem in terms of p-adic absolute value, rather
than p-adic valuations. We are all familiar with the standard absolute value on R,
but a generalized absolute value is any function | - | : R? — [0, oo) satisfying for all
x,y €R,

« |x| =0ifand onlyifx =0

« lxyl = lx|lyl
¢ |x +y| < |x| + |y| (triangle inequality).



Note that all these properties are true for the standard absolute value on R.

A stronger version of the triangle inequality is called the ultrametric inequality:
|x + y| < max(]x|, |y|). An absolute value satisfying the ultrametric inequality is
called non-Archimedean.

(a) Prove that the function |x| = p~°™ (where 0 = p~®) is a non-Archimedean
absolute value.

(b) Rephrase Monsky’s tricoloring in terms of the 2-adic absolute value.

5. We only considered p-adic valuations for prime p. What would go wrong if we
tried to copy the definition for non-prime p?

6. Prove that Monsky’s coloring is dense in every color: for every color, every point
(x,y) € R?, and every ¢ > 0, there is a point (x/,y") with |[x — x| < € and
|y —¥'| < e such that (x, ") is the desired color. In other words, no matter how
far you zoom into the picture, you will never find a region that is all colored the
same—every tiny patch will always have points of all three colors. This makes the
coloring very hard to draw.



2.2 Computing the area

With Monsky’s tricoloring defined, it remains to show that any triangle with three vertices
of different colors has area with negative 2-adic valuation (i.e. even denominator). To do
this, we need to first to compute the area of a triangle given its three pairs of coordinates.
Here are a few that you might think of:

« (very annoying) Compute the side lengths using the distance formula, then apply
Heron’s formula to get the area.

+ (annoying) Compute one side length using the distance formula and regard it
as the base of the triangle. Compute the perpendicular line passing through the
opposite point, find the intersection with the base, then use the distance formula
to compute the height of the triangle. Use A = bh/2.

+ (advanced knowledge) Directly apply the shoelace formula (a trick that people
who do math Olympiads might know, which is a formula to compute the area of
any polygon given its coordinates).

« (our choice) Use the determinant, a concept from linear algebra.

Definition 2.5 (determinant). Let 4 = (a,b) and U = (c, d) be two vectors in the plane.
The determinant of these vectors, denoted det(u, U) is the area of the parallelogram that
they span, negative if going from # to U is clockwise. R

For example, ifu = (1,0) and v = (0, 1), then det(u, U) = 1. Swapping ¢ and U would
result in a determinant of —1.

1A

det(u,0) = 1
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To compute the determinant of (area spanned by) any other pair of vectors, the
typical technique is to keep modifying the shape until it becomes the square with area 1
above. For example, one modification that we can make is to multiply one of the side
lengths by a factor of k (multiplying coordinatewise, e.g. 2 - (1,2) = (2,4)). This results
in the area being changed by a factor of k. In the following example, k = 2.
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Another modification that we can do is skew the parallelogram, without changing
its base or height. We can do this by considering either u or U as the base. Algebraically,
this means adding a multiple of the base to the other vector (adding coordinatewise, e.g.
(1,2) + (3,1) = (4,3)). This has no effect on the area. In the following example, U is
considered the base.
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In other words, we have just shown:

Proposition 2.6 (basic properties of determinant). Let 1 and U be two vectors in the plane,
and k € R be any constant.
1. det(ku, v) = det(u, kv) = k det(i, U).
2. det(i + kv, 0) = det(u, U + kui) = det(u, ). r
Now, we can use these properties to directly calculate the area of a parallelogram

spanned by two vectors (a, b) and (c, d). To minimize the amount of parentheses, people
typically write det((a, b), (c,d)) as det [ ¢ & ]. We have

det[ ‘Cl Z ]zadet: i béa ] (by 1)
—ade o, 20| (by2)
:adet: (1) (adli/l?c)/a ]
= (ad — bc)det[ (1) b{a ] (by 1)
= (ad — bc) det[ (1) (1) ] (by 2)
= ad — be.

The process that we just performed is called Gaussian elimination (in which a set
of vectors of reduced to the basis vectors (1,0) and (0, 1), or their higher dimensional
analogues), and this calculation proves the following theorem:

Theorem 2.7 (area of a triangle). Let (0,0), (a, b), (c, d) be the coordinates of the vertices
of a triangle. Then, the area of the triangle is |ad — bc| /2. r



Finally, we can prove the desired final result of this section.

Lemma 2.8 (valuation of a trichromatic triangle). Let (rq,7,), (g1, 82), (b, b,) be the
coordinates of the vertices of a triangle, and suppose that according to Monsky’s tricoloring,
(rq,ry) is red, (g1, 8,) is green, and (by, b,) is blue. Let A be the area of this triangle. Then
0 (A) < -1 4

Proof. First, by Lemma 2.4, we may translate the triangle by (—b;, —b,) without affecting
the colors. Thus, assume without loss of generality that (b;, b,) = (0, 0). Then,

7182 — ra81l
0y(A) =0, <#) = 0,(r18, —1r281) — 1.

By the definition of Monsky’s tricoloring, v,(r;) < v,(r,) and v,(g,) < U,(g1)-
Therefore, v,(r;2,) = U,(r1)v,2(g2) < U5(r2)v2(g1) = v,(r,8;1). Thus, we may continue to

simplify
05(A) = min(v,(r182), V2(r281)) — 1
= Uy(ruy(g) — 1
<0:-0-1
< -1. O

Corollary 2.9 (lines have two colors). Every line in Monsky’s tricoloring contains points
from at most 2 colors. B

Proof. Ifaline contained points of 3 colors, one would be able to find a degenerate (area 0)
trichromatic triangle along the line, but v,(0) = oo, which isnot < —1, contradiction. O

Practice

Do these problems if you want to reinforce ideas and motivations from the main lesson.

1. Show that the converse of Lemma 2.8 is false, that is, there are triangles with
0,(A) < —1 but vertices not all different colors.

2. Inour computation of det | a 2 |, we ignored two edge cases to simplify things: each
application of Proposition 2.6.1 involved dividing by something, but we avoided
checking that it was non-zero. What should we do if they actually are zero? Why
doesn’t it affect the rest of the proof?

3. Compute the volume of the tetrahedron with vertices (0, 0, 0), (3,0, 3), (2, 2,0), and
(0,2,4). (Hint: First, what is the volume of the tetrahedron with vertices (0, 0, 0),
(1,0,0),(0,1,0), and (0,0,1)?)

4. Let p be any prime and consider Monsky’s tricoloring with this new p. Suppose
a triangulation of a shape into n triangles of equal area contains at least one
trichromatic triangle. Prove that if the area of the whole shape is A, then v,(n) >
vp(24). (We will use this fact in a future exercise to extend Monsky’s theorem to
other shapes.)

5. Corollary 2.9 can be proven directly from the definition of Monsky’s tricoloring,
without talking about area, but it is more complicated. However, it’s still worth
trying to get some intuition. For these questions, feel free to avoid writing equations.
Argue using the v,(x)-v,(y) chart on page 4.



(a) Prove that if (x, y) and (a, b) are two different colors, then (x,y) + (a, b) is
one of the two colors. (In particular, you already know this fact when one of
them is blue/e, so let (x, y) be red/x and (a, b) be green/m.)

(b) Prove that for all k € R, either (x, y) is the same coloras k - (x, y), or k- (x,y)
is blue/e.

(c) Show thatif (x,y) and (a, b) are two different colors, then for all k € R, the
point (x,y) + k - (a, b) is one of those two colors. Conclude that every line
has at most 2 colors.

Extensions
Do these problems if you want to explore new ideas related to the main lesson.
6. Usewhat we learned about the determinant to prove the shoelace formula: Suppose

the vertices of a polygon are (x;,y;), ..., (x,,¥,) listed in counterclockwise order.
Then the area of the polygon is

1
§|(X1YZ + X293 + o+ Xpy1) — (V11X + YaX3 + 0+ YpX)l.

It is so named because the terms to be multiplied look like tying your shoelaces.

X1 X2 X3 Xn X1
A1 h%) X4 Yn 1

10



3 Finding a trichromatic triangle

To recap where we are, we have shown that as long as you can find a trichromatic triangle
in a triangulation, it is impossible for it to have area 1/N for odd N. What remains is to
find this trichromatic triangle.

Our tool will be a slight variation of an important result connecting graph theory
and topology, called Sperner’s lemma. Sperner’s lemma is the 2D generalization of the
following intuitive fact: if you have a line of points that starts with red/x and ends with
blue/e®, there must be an odd number of segments with different colors on both ends. In
this picture, there are 5 segments with different colors on both ends.

X X X X

The 2D version will assert the existence of an odd number of trichromatic triangles
given appropriate boundary conditions. The main difference between Sperner’s original
lemma and the version that we will eventually use to prove Monsky’s theorem is that
Sperner had a slightly different definition of triangle than we do.

Definition 3.1 (graph triangulation). A planar graph G = (V, E) has a set of vertices
V C R? and a set of non-intersecting edges E that each connect exactly two vertices,
which you can just think of as line segments or curves. The edges cut R? into many
regions, which we call faces, including the unbounded face outside of everything.

A triangle in a planar graph is a face formed by exactly three edges. An (internal)
triangulation of a planar graph adds some vertices and/or edges so that every face is a
triangle, except possibly the unbounded face. R

good triangulation not a triangulation

In the picture on the right, despite every face looking like a triangle as drawn in the
plane, it is graph-theoretically not a triangulation, because the larger “triangle” actually
consists of 4 edges. (Generally in graph theory, we only care about the structure between
vertices and edges, not how they end up laid out in a drawing.)

Theorem 3.2 (Sperner’s lemma). Let G = (V, E) be any triangulation of a triangle RGB.
Suppose we have assigned colors to the vertices V such that R is red/X, G is green/m, and B
is blue/®. Suppose that all vertices along line segment RG are either red/x or green/m, and
similarly for GB and RB. Then there must be an odd number of trichromatic triangles. |

Proof. In every face, including the unbounded face, let us count the edges that are red/x
on one end and green/m on the other end. Call these red-green edges. Doing so will
actually count every red-green edge twice, once from each side, so we should end up
with an even number in total.

First, let us count the red-green edges in the unbounded face. As we noted before,
there are odd number of edges along RG with different colors on each end. Neither GB
nor RB is allowed to contain red-green edges, therefore the unbounded face contributes
an odd number of red-green edges. In the picture below, these counts are marked.

11
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Next, let us count the red-green edges in the bounded faces. Every triangle with at
most 2 colors has either 0 or 2 red-green edges, which contributes an even number. Every

trichromatic triangle has exactly 1 red-green edge. In the picture below, the number of
red-green edges in each triangle is written, and the counts are again marked.
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Therefore, in order for the final count to be even, noting that the unbounded face

contributes an odd number and each non-trichromatic face contributes an even number,
the number of trichromatic triangles must be odd. O

In order to adapt Sperner’s lemma to our coloring problem, we have to first make
some observations about the boundary of our unit square. These are basic observations
that follow directly from the original definition.

Lemma 3.3 (boundary of Monsky’s tricoloring). In Monsky’s tricoloring, we have:
— XEXH —X
L
[ ] X
‘. — XO0X® — >‘(
That is,
» (0,0) is blue/®, (0,1) is green/m, and (1, 1) and (1, 0) are red/X.
« The bottom boundary is entirely red/x and blue/e.
o The left boundary is entirely green/m and blue/e.

« The top and right boundaries are entirely red/X and green/m. B

Proof. Exercise. O

12



Finally, note that the main difference between Sperner’s lemma and our coloring
problem is that we allow triangular faces to have more than three edges, as long as
enough edges are collinear so that the face still resembles a triangle embedded in the
plane. The main idea is to use Corollary 2.9, about how straight lines have only two
colors, to recover much of the same argument. The fact that we are now starting with a
square, not a triangle, actually does not cause any trouble, because we can treat the top
and right boundaries as a single “side” that is red/x and green/m.

Lemma 3.4 (trichromatic triangle in Monsky’s tricoloring). Suppose the unit square is
subdivided into triangles (shapes formed by 3 straight lines) and the vertices are all colored
according to Monsky’s tricoloring. Then there is an odd number of trichromatic triangles
(in particular, at least one). r

Proof. In what follows, to disambiguate, we use the words “vertex” and “side” to refer
to the vertices and sides of triangles, and the words “node” and “edge” to refer to the
vertices and edges of the underlying graph. In other words, every triangle has exactly 3
vertices but may touch more nodes, and every side may contain several collinear edges.

We will do the same thing as before, counting the red-green edges in every face,
and this process must end with an even number in total. Lemma 3.3 provides us with
the boundary conditions needed to count red-green edges in the unbounded face. In
particular, there will be a odd number of red-green edges on the top/right boundaries,
because the top-left is green/m and the bottom-right is red/X, and there are no red-green
segments on the other boundaries.

The remaining bounded faces are triangles in the sense of being formed by 3 straight
lines, each of which contains only vertices of at most two colors by Corollary 2.9. Consider
a side of the triangle. If the two vertices are not red/red, green/green, or red/green, then
there are no red-green edges on that side. In the case of red/red or green/green, there are
an even number of red-green edges. In the case of red/green, there are an odd number
of red-green edges.

Thus, the triangle has an odd number of red-green edges if and only if there is exactly
one side with red/green vertices, if and only if it is trichromatic. We need an odd number
of such triangles, because the total count is even and the count on the unbounded face
is odd. Thus, there are an odd number of trichromatic triangles. O

This completes the proof of Monsky’s theorem, at least when the triangles all have
rational points. Once we extend the concept of valuations to real numbers, the rest of
the argument will proceed with no change.

Theorem 3.5 (Monsky’s theorem). There is no way to subdivide a unit square into an
odd number of triangles with the same area. r
Practice

Do these problems if you want to reinforce ideas and motivations from the main lesson.

1. (a) Find a (graph-theoretic) triangulation of a triangle where the three vertices
of are red, green, and blue as desired, but there is no trichromatic triangle in
the triangulation. (In other words, the boundary conditions on the edges are
necessary for Sperner’s lemma.)

13



(b) Now define a triangle as a shape formed by 3 lines, as in Monsky’s theorem.
Find a triangulation of a triangle that satisfies the boundary conditions of
Sperner’s lemma, but there is no trichromatic triangle. (In other words, the
fact that every line contains at most 2 colors was necessary for our proof.)

2. Prove Lemma 3.3.

3. Write an alternative proof for Sperner’s lemma based on the idea that triangles are
rooms and red-green edges are doors that you can walk through. (This method
is also typically more effective for actually finding a trichromatic triangle, rather
than just knowing existence.)

4. Prove the following generalization of Sperner’s lemma: Consider a triangulation
of any shape. Listing colors counterclockwise, let A be the number of RGB
triangles, and let B be the number of RBG triangles. Traversing the boundary
counterclockwise, let C be the number of RG edges and D be the number of GR
edges. Then A—B=C —D.

(Hint: Mimic our original proof of Sperner’s lemma. Name the colors 0, 1, and
2 instead of red, green, and blue. Instead of + signs along red-green edges, place
either —1, 0, or 1 along all edges, depending on which one is equivalent to j — i
(mod 3), where the edge goes from color i to j counterclockwise.)

5. Use the following steps to prove that a regular hexagon can only be cut into equal-
area triangles in multiples of 6.

(a) Convert any equal-area triangulation of a regular hexagon into an equal-area
triangulation of the hexagon with vertices (0, 0), (1,0), (2,1), (2,2), (1,2),
and (0, 1). Thus, we will focus on this hexagon from now on.

(b) Compute the boundary colors of this hexagon with Monsky’s tricoloring with
p = 3, showing that Sperner’s lemma can be applied.

(c) Apply Problem 2.4 to conclude that the number of triangles n must be divisible
by 3.

(d) Recompute the boundary colors for p = 2 and apply Problem 3.4 to conclude
that n is divisible by 2.

Extensions

Do these problems if you want to explore new ideas related to the main lesson.

6. Solve the rental harmony problem: Three roommates are moving into a three-
bedroom apartment and need to decide how to split the rent. However, the
bedrooms are all different and everyone has their own preferences. In other
words, each person has a function that takes in the prices for each room and
outputs the room they would pick given those prices.

Suppose that rent is $3000 and everyone agrees that $10 is a negligible amount.
How can the roommates determine who should take which room, and how much
each person should pay? Each person should end up feeling like they got the room
they wanted given the final prices for each room, and if there are multiple such
configurations, pick any of them. (Hint: Barycentric coordinates!)

14



4 Extending to real-valued points

The last thing to show about Monsky’s theorem is how to rule out triangles with real-
valued vertices, not just rational points. This is the most technically challenging part,
and most other resources will assume rather advanced abstract algebra knowledge to
explain this part, but we will attempt to explain as much as possible concretely.

The goal is to extend v, (or v, more generally) to take real values, while continuing
to satisfy Proposition 2.2: the basic properties v,(xy) = v,(x) + v,(y) and v,(x +y) >
min(v,(x), v,(y)). Here are three illustrative examples of what can happen.

Example 4.1 (v, for nth roots). For nth roots, there is a clear choice for what we need
to pick, in order to satisty v,(xy) = v,(x) + v, (y):

0p () = 20,

This gives vz(\/a) =1/2. r

In particular, we see that valuations can take rational values—that is why we previously
insisted on writing “blue/® if v,(x) > 0 and v,(y) > 0” rather than v,(x) > 1 and
U,(¥) > 1. Some other irrational numbers can also be computed this way, but not all of
them.

Example 4.2 (choices for v,). Consider « = 5+1/17 and § = 5 —1/17. We have

af=G+V17)G-V17)=25-17 =8,

hence v,(af) = vy(a) + v,(B) = 3. Should we just set v,(a) = v,(B) = 3/2 then? No,
this does not work. The valuations must satisfy

min(v,(a), v,(8)) < v(a + B) = v,(10) = 1,

and 1.5 > 1. In fact, to satisfy both this requirement and the previous requirement, we
must have v,(a) # U,(3), thus we are actually in the equality case of the inequality, and
one of v,(ar) and v,(8) must be 1, the other equal to 2. Either choice is fine, because it is
algebraically impossible to differentiate  and 3: any polynomial equation satisfied by «
will also be satisfied by 3. r

One easier case, however, is extending v p 10 transcendental numbers like 7r. Numbers
are called algebraic if they satisfy polynomials expressions with rational coefficients,
and transcendental otherwise. In the previous example, we were restricted in what we
could pick for v,(a) and v,(B) because expressions like a3 and a + (8 resulted in rational
numbers that we already knew the valuations of. However, this is not the case with 7,
so we are actually free to choose whatever we want for v, (7)!

Example 4.3 (v, for 7r). We can freely pick v,(7) = 0. However, once we pick this, v, is
also uniquely determined for other numbers, e.g. v,(27) = V,(2)+v,(7) = 1+0 = 1. We
can also have expressions like 3 + 7z, which need to satisfy v,(3 +7) > min(v,(3), v, (7))
with equality if v,(3) # v, (7). Although this is an inequality, it turns out that we can
just pick v,(3 + 7) = min(v,(3), v,(7)) and it works!

It also true that we must have vp(%) = 0 and in general some constraints on roots
of polynomials using 7 as a coefficient, but that is a problem that we’ll tackle later, with
the rest of the algebraic roots. a
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Proposition 4.4 (rational expression). Given a set of numbers X and a new number t,
every number that can be formed using X, t, addition, subtraction, multiplication, and
division can be written as

ag + ait + ayt? + - + a,t"

by + byt + byt2 + --- + b, t™

for some ay, ..., a,, by, ..., b, € X. (The set of such expressions is often denoted X(t).)
Proof. Omitted. 0
Proposition 4.5 (v, for transcendental numbers). Suppose X is a set of numbers satisfying

Proposition 2.2, and suppose t is a transcendental number with respect to X (meaning t
does not satisfy any polynomial with coefficients in X). Define

(ao +agt + art? + -+ a,t”
p

bo + blt + b2[2 4o+ bmtm) = miln Up(ai) - rn]ll'l Up(bj)~

Then Proposition 2.2 continues to be true on X (t). r

Proof sketch. For the sake of illustration, we will just prove Proposition 2.2 for a + bt
and c + dt, and omit the general case for now.

1. We want to show v,((a + bt)(c + dt)) = vp(a + bt) + v,(c + dt). By the above
definition of v, this is equivalent to showing

min(v,(ac), v,(ad + be), v,(bd)) = min(v,(a), v,(b)) + min(v,(c), v,(d))
= min(v,(ac), v,(ad), v,(be), v,(bd)).

We know thatv,(ad+bc) > min(v,(ad), v,(bc)), with equality if v,(ad) # v,(bc).
Thus, the only case that we are concerned about is when v,(ad) = vp(bc) and these
are actually the minimum of the RHS. That means the following four equations
are true:

vp(ad) < vp(ac)
vp(ad) < vp(bd)
vp(be) < vy(ac)
Up(be) < vy(ba).

Among many possible contradictions, the second equation implies v,(a) < v,(b)
and the third equation implies v, (b) < vp(a), so this case is not possible.

2. We want to show v,((a + bt) + (¢ + dt)) > min(v,(a + bt),v,(c + dt)) with

equality if v,(a + bt) # v,(c + dt). By the above definition of v, this is equivalent
to showing

min(v,(a + ¢), v,(b + d)) > min(min(v,(a), v,(b)), min(v,(c), v,(d)))
= min(vp(a), v,(b), v,y(c), vp(d)).
This is certainly true because we know v, (a +¢) > min(v,(a), v,(c)) and likewise
for b + d. For the equality condition, the assumption is equivalent to saying that
min(v,(a), v,(b)) # min(v,(c), v,(d)). Casework on which is actually smaller in

these two mins gives exactly the conditions for the equality conditions on v,(a +c)
and v,(b + d). dJ
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Now, let’s turn back to the algebraic case. While it is difficult in general, some
clever algebra does let us compute the choices for v, when given an algebraic number

a consisting just of square roots. For example, numbers lie 5+ /17 and 1/3 +4/10/7,
or even 3 — i (but we don’t particularly care about that). In particular, note that this
condition is equivalent to « satisfying a quadratic equation: You all know how to find

the solution of a quadratic equation, and it looks a + \/3 for some a, b € Q. Conversely,

given a + \/3 we can multiply with a — \/B to get a®> — b € Q. Thus, these two numbers
are the solutions to x> — 2ax + (a> = b) = 0.

To make notation easier, let & and 8 be the two roots of x> + rx + s = 0. Then we
can calculate that:

v,(s) = v,(a® + ra)
> min(2v,(a), v,(r) + v,(@)),

with equality if 2v,(a) # v, (r) + vp(@), in other words v, (a) # v,(r). That gives us two
cases. First, it’s possible that v,(a) = v,(r). In this case, we are done computing v, ().

The other case is that v, (s) = min(2v,(a), v, (r)+v,(a)) = v,y (@)+min(v,(a), vy(r)).
A bit of algebra will show that:

_ vp(s)/2 ifvy(s)/2 < v,(r)

vp(@) vp(8) —vp(r) ifv,(s)/2 > vp(r)

Lastly, the other solution 8 must satisfy the same equations. Furthermore, v,(a) +
Up(B) = vp(aB) = v,(s). That means we are restricted to two possibilities:

« Ifvy(s)/2 < vy(r), then there is only one option and v,(a) = vp(B) = vp(s)/2.
This was the case of vz(\/a), since x? — 2 = 0 has v,(s) = 1 and v,(r) = 0.
o Ifvp(s)/2 > v,(r), then there are two options: v,(a) = v,(r) and v,(B) = v,(s) —

vp(r), or vice versa. This was the case of v,(5 + \/17), since it satisfies x? — 10x + 8
where v,(s) = 3 and v,(r) = 1.

In other words, we have proven the following, which is the converse of what we really
wanted, but illustrates the main difficulty of this task:

Proposition 4.6 (v, for quadratic extensions). Let X be a set of numbers satisfying
Proposition 2.2 and let o and 8 be the two solutions of x> + rx + s = 0, wherer,s € X. If
Proposition 2.2 were also true for v,(a) and v,(B), then

« Ifu,(s)/2 < vp(r), we have v, (a) = v,(B) = vp(s)/2.
s If v,(s)/2 > vy(r), we have vy(a) = v,(r) and v,(B) = v,(s) — v(r), or vice
versa. y

There are two difficulties: first, we need to actually pick one option for all quadratics
with v,(s)/2 > v,(r). Then, we need to also make sure that all of our choices are

consistent with each other. For example, once we’ve picked an option for v,(5 +/17),

we certainly no longer have freedom to choose for v,(10 + \/&), and there are more
complicated restrictions with addition again. It’s a little beyond the scope of this course
to entirely understand the method to pick these consistently, but it can be done and
relies on Axiom of Choice, or more specifically Zorn’s Lemma.
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The last thing to show you is a method for computing the options for larger degree
polynomials. This is a method known as Newton polygons.

Definition 4.7 (Newton polygon). Let p be a prime. The Newton polygon of a polynomial
ap + a;x + --- + a,x" with respect to p is the lower convex boundary of the points

(0’ vp(an))’ (15 Up(an—l))’ cee s (n’ Up(aO))' 4

The lower convex boundary means that you should imagine a rubber band stretching
around the points, and we look only at the lower half. In particular, the Newton polygon
is not a polygon. It is a connected sequence of line segments. In the below examples, we
use p = 2.

3 T 3 3 °
0
2 24 2
1 11 1
1 2 1 2 1 2
x2 =2 x2—10x + 8 x2 —8x+12

Since we’re already familiar with the first two of these examples, notice the slopes of these
segments correspond exactly to the valuations of their roots! Moreover, the segment
of horizontal length 2 in the Newton polygon for x> — 2 corresponds with 2 roots of
valuation 1/2. In general, we have the following theorem.

Theorem 4.8 (fundamental theorem of Newton polygons). Let a(x) be a polynomial
and fix a prime p. For every segment in the Newton polygon of a(x) with respect to p, if
the segment has horizontal length ¢ and slope m, then ¢ of the roots of a(x) must have
valuation v, equal to m. r

Proof sketch. Again for the sake of brevity, we will only show the proof for quadratics.
Let x> — ax + b = 0 and let a and 8 be the two solutions. Recall that a = a + 8 and
b=ap.

« Suppose that v,(a) # v,(B). Then we have plotted (0, 0), (1, min(v,(a), v,(B))),
and (2, v,(a) + v,(B)). Because min(x, y) < (x + y)/2, the Newton polygon will
look like a V and have two segments. The first segment has slope min(v,(a), v,(8))
(we don’t know which one), and the second segment has slope (v,(a) + v, (8)) —
min(v,(a), v,(B)), which is the other one.

« Suppose that v, (a) = v,(8) = k. Then we have plotted (0, 0), (1,?), (2, 2k), where
¢ = vp(a+ B) > k. Thus, ¢ lies above the lower convex boundary and the slope of
the line is k, as we wanted. O

To reiterate, this is just a more enlightening way, to conclude what v, () must be for
algebraic a. We have still not discussed exactly how to ensure that all the choices we
make are consistent, but that proof is beyond the scope of this lesson.
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