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1 Syntax of mathematics

Mathematicians share a common language to make precise what they are talking about.
In this first section, we’ll learn this the basics of this language.

1.1 Logic

There are a couple of English words that we use casually in English, but have precise
meanings in mathematics. First, the words “and”, “or”, and “not”. We can summarize
what they mean using truth tables. (Because the symbols “T” and “F” look visually
similar, we will use “0” for false and “1” for true instead.)

A B A and B
0 0 0
0 1 0
1 0 0
1 1 1

A B A or B
0 0 0
0 1 1
1 0 1
1 1 1

A not A
0 1
1 0

! In other words, “A and B” is truewhen both are true, and “A or B” is truewhen at least
one of them is true, including when both are true! This resolves a contextual ambiguity
in English: if someone says “You must have a Master’s degree or 3 years experience
for this job,” it is certainly okay to have both a Master’s and 3 years experience, but if
someone says “This lunch contains your choice of a piece of fruit or a bag of chips,” you
are probably not allowed both fruit and chips.

Sometimes, there are multiple ways to express the same sentence. For example,

“I will not do TPS and I will not do relays.”

means the same thing as

“It is not true that I will do TPS or relays.”

Generalizing this example, we have:

Theorem 1.1 (de Morgan’s laws). For any two statements A and B,

• “not [A and B]” means the same as “[not A] or [not B]”.
• “not [A or B]” means the same as “[not A] and [not B]”. ⌟

Proof. We can reason through all cases, depending on whether A and B are true or false.
For example, if A and B are false, then “not [A and B]” is true, and “[not A] or [not B]”
is also true (so they are the same). Here are all four cases of the first de Morgan’s law:

A B A and B not [A and B]
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

A B not A not B [not A] or [not B]
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0

The second law is left as practice for you.
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~~~

The next logical word we will learn is “implies”. The sentence “A implies B” is also often
written as “if A, then B” or “B, if A.” The meaning of these sentences is summarized by
the following truth table.

A B A implies B
0 0 1
0 1 1
1 0 0
1 1 1

! This truth table can be confusing at first. For example, it suggests that the sentence
“if 2 is odd, then 4 is odd” is true. You might think intuitively that such a sentence is
neither true nor false: it is just meaningless because 2 is not odd. There is no situation
where this sentence could help you reason about anything.

However, consider the sentence “for all 𝑛, if 𝑛 is odd, then 𝑛 + 2 is odd.” We would
certainly want this sentence to be considered true. Thus, when you plug in 𝑛 = 2, you
get “if 2 is odd, then 4 is odd,” so we should consider this to be true. We will talk more
about sentences with variables like this in the next section.

Proposition 1.2. “A implies B” means the same thing as “[not A] or B.” ⌟

Proof. We just use a truth table again.

A B A implies B
0 0 1
0 1 1
1 0 0
1 1 1

A B not A [not A] or B
0 0 1 1
0 1 1 1
1 0 0 0
1 1 0 1

Again, because the final columns are the same, these are equivalent.

Corollary 1.3. “not [A implies B]” means the same thing as “A and [not B].” ⌟

Proof. Apply de Morgan’s law to the above proposition.

Example 1.4. Negate the following sentence. In other words, when is the following
sentence a lie?

“If it is cold, I will put on a jacket and raise the thermostat.” ⌟

Solution. Negating the implication, we get

“It is cold, and it is not true that [I put on a jacket and raised the thermostat].”

We can apply de Morgan’s law to finally get

“It is cold, and [I did not put on a jacket or I did not raise the thermostat].”
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There is also “A is implied by B,” which means the same as “B implies A,” and “A if
and only if B,” which means the same as “A implies B, and A is implied by B.” In other
words, we say “A if and only if B” when A and B are equivalent statements. In particular,
“A if and only if B” has the following truth table.

A B A if and only if B
0 0 1
0 1 0
1 0 0
1 1 1

This means that in all the theorems before where we said “means the same as,” we could
have been more precise with our language and said “if and only if.”

~~~

! Before closing off this section, be aware that when giving a definition, many people tend
to write “if” when they really mean “if and only if”. For example, if someone says “A
real number 𝑥 is called positive if 𝑥 > 0,” this really means “A real number 𝑥 is called
positive if and only if 𝑥 > 0.” There is no good reason for this, just a quirk of culture.

Also, you may occasionally see people use symbols for some of the logical words
we’ve described above. These symbols are primarily used in personal notes, whiteboard
shorthand, and when studying logic as a mathematical discipline. They should not be
used in most formal mathematical writing.

and or not implies implied by if and only if
∧ ∨ ¬ or → or ⇐⇒ ← or ⇐⇐ ↔ or ⇐⇒ or iff

Practice

1. Use words from mathematical logic (“and”, “or”, “implies”, etc.) to rewrite the
following English phrases:
(a) Neither A nor B
(b) For A, it suffices that B
(c) A, but B
(d) Exactly one of A and B is true

2. For each of the following facts, write an example sentence to ensure that it makes
intuitive sense. Then prove them using truth tables, until you feel bored. (But
these are all important facts, so make sure you are comfortable using them even if
you skip the proofs.)
(a) (de Morgan’s laws, part 2)

“not (A or B)” means the same as “(not A) and (not B)”
(b) (distributivity of or over and)

“A or (B and C)” means the same as “(A or B) and (A or C)”
(c) (distributivity of and over or)

“A and (B or C)” means the same as “(A and B) or (A and C)”
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3. Does “not [A implies B]” mean the same thing as “A implies [not B]”? Explain.
4. Negate the following sentence by applying rules. In other words, when is the

following sentence false? In your final answer, ensure that the word “not” only
appears before A, B, C, . . . (not more complicated expressions).

If [A and B], then [[C or not D] and E].

Extensions

These problems describe extra things to think about that might be interesting, but not
fundamental for your future learning. They may be harder.

5. (Universal gates, ) We introduced a bunch of logical words, like “and”, “or”,
“not”, and “implies”. We saw that you don’t really need “implies” because “A
implies B” is just shorthand for “[not A] or B.”

Here’s a fun fact: you can get away with even fewer words! Let “A nand B”
mean “not [A and B]”. Here is the truth table of “nand”:

A B A nand B
0 0 1
0 1 1
1 0 1
1 1 0

It turns out that if you have “nand”, you don’t need “and”, “or”, or “not” at all! Just
one logical word is enough to express any logical relationship that you want, such
a word is called a universal gate. Show how to express “A and B”, “A or B”, and
“not A” using just “nand” (and some parentheses). (Hint: figure out “not A” first.)

(As an aside: electrical engineers use “nand” a lot in their circuits for this
reason! Instead of manufacturing lots of different logical pieces for different uses,
sometimes, they find it useful to just make a lot of “nand gates” and string them
together in the ways you discovered.)

6. (DNF and CNF form, ) Let A, B, C, . . . be some sentences without logical words
(i.e. “it is raining”). A sentence is in disjunctive normal form (DNF form) if it looks
something like:
“[A and [not B] and C] or [[not D] and E] or [F and G and [not H] and [not I]].”
In other words, call the sentences “A” and “not A” atoms, call an “and” of atoms a
term, and a sentence in disjunctive normal form is an “or” of terms. Give a method
to convert any logical sentence into DNF form. (In particular, this means that
parentheses in a logical expression never need to be more than two levels deep.)

As an additional challenge, conjunctive normal form (CNF form) is the same
thing, but with the roles of “and” and “or” swapped. In other words, a clause is
a “or” of atoms, and a sentence is in CNF form if it is an “and” of clauses. Give a
method to convert any logical sentence into CNF form.

(As an aside: DNF and CNF form are critically important in computer science!
The P vs. NP problem, which has a $1 million bounty for solving, is equivalent to
asking: When given a formula in CNF form, is there an efficient way to determine
whether or not the truth table has at least one 1 in the last column?)
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1.2 Sets and quantifiers

Logic is about reasoning, but what are the things that mathematicians reason about?
First, we typically think about some basic objects. These are the things that we aren’t
interested in further breaking into parts. Examples include 2, 𝜋, Alice, and the action of
rotating the right face of a Rubik’s cube by 90◦ clockwise. Then, we can put the objects
together into collections called sets. Sets contain objects (or other sets!) and don’t care
about order or duplicates.

Example 1.5.

• The set of Fruit at Mathcamp 2025: {Eric, Kevin, Marisa}.
• The set of Mathcamp RA groups: (redacted for privacy—it would look something
like {{A, B, C, D}, {E, F, G}, {H, I, J, K, L}}) but with more students and groups.

• {1, 2, 2} = {1, 2} = {2, 1}, because we don’t care about order or duplicates.
• The natural numbers (or whole numbers): ℕ = {0, 1, 2, 3, … }. It’s typical to write
an infinite list that follows a pattern using “… ”. Note that mathematicians do not
agree on whether or not ℕ includes 0, but in this class we will include 0.

• The real numbers ℝ (all the numbers on the number line, including 𝜋,
√
2, etc.).

There is no way to write down all the elements of ℝ as a list that follows a pattern,
but ℝ is still a set because it is a collection of objects.

• The integersℤ = {… ,−2,−1, 0, 1, 2, … }, the rationalsℚ (fractions of integers), and
the complex numbers ℂ.

• The empty set, having no objects: ∅. ⌟

The most basic question that you can ask about a set is whether or not it contains a
particular element. We use the following notation.

𝑋 contains the element 𝑥 ←→ 𝑥 ∈ 𝑋
𝑋 does not contain the element 𝑥 ←→ 𝑥 ∉ 𝑋

The symbol ∈ is pronounced “in”, and the symbol ∉ is pronounced “not in”.

Example 1.6.

• 𝜋 ∈ ℝ.
•
√
2 ∉ ℕ.

•! 0 ∉ {{0, 1}, {2, 3}}. This set contains two groups of numbers. For example, {0, 1} ∈
{{0, 1}, {2, 3}}. We would not say that it contains any numbers directly. ⌟

~~~

With sets, there are two new logical words that we need to introduce: “for all” and “there
exists”. These are called quantifiers. Note that every time you say “for all 𝑥” or “there
exists 𝑥”, it is important that to mention what set you are talking about!

Example 1.7. Here are some true statements.

• For all 𝑛 ∈ ℕ, the number 𝑛(𝑛 + 1) is even.
• There exists 𝑥 ∈ ℝ such that 𝑥2 + 𝑥 − 5 = 0. ⌟
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You can think of “for all” as a kind of infinite “and”, and “there exists” as a kind of
“infinite or”. For example, if we allowedmathematics to involve infinitely long sentences,
the sentence “for all 𝑛 ∈ ℕ, the number 𝑛(𝑛 + 1) is even” could be rephrased as:

0(0 + 1) is even and 1(1 + 1) is even and 2(2 + 1) is even and 3(3 + 1) is even and . . .

Recall de Morgan’s law, that “not [A and B]” means the same thing as “[not A] or
[not B]”. By analogy, with the above way of thinking, if A(𝑥) is a sentence about 𝑥, we
should have the following:

• “not [for all 𝑥 ∈ 𝑋, A(𝑥)]” means “there exists 𝑥 ∈ 𝑋 such that not A(𝑥)”.
• “not [there exists 𝑥 ∈ 𝑋 such that A(𝑥)]” means “for all 𝑥 ∈ 𝑋, not A(𝑥)”.

! These rules are important. It is very easy to get lost when thinking about quantifiers
and negation, and knowing these rules will help you prevent mistakes.

Example 1.8. Negate the following sentences without using the word “not” or anything
similar.

“For all𝑚 ∈ ℕ, if there exists 𝑛 ∈ ℕ such that𝑚 = 2𝑛, then𝑚 is even.” ⌟

Solution. Applying the above rule, we convert

“not [for all𝑚 ∈ ℕ, if there exists 𝑛 ∈ ℕ such that𝑚 = 2𝑛, then𝑚 is even]”

into

“there exists𝑚 ∈ ℕ s.t. not [if there exists 𝑛 ∈ ℕ s.t.𝑚 = 2𝑛, then𝑚 is even]”

which becomes

“there exists𝑚 ∈ ℕ s.t. [[there exists 𝑛 ∈ ℕ s.t.𝑚 = 2𝑛] and not(𝑚 is even)]”

which is the same as

“there exists𝑚 ∈ ℕ and 𝑛 ∈ ℕ such that𝑚 = 2𝑛, and𝑚 is odd.”

(We used “s.t.” to mean “such that” to make sure each sentence fit on one line: this is
shorthand like ∧, ∀, etc. and should normally be avoided in formal writing.)

~~~

Next, let us discuss one common way of writing down a set, called set-builder notation.
It is used as follows:

𝑌 = {some expression using 𝑥 ∣ 𝑥 ∈ 𝑋, and possibly other conditions}.

The symbol ∣ is pronounced “such that” (but never replace the English words “such that”
with ∣). This set-builder expression means, go through everything in 𝑋, and for each 𝑥
satisfying all the other conditions, include “some expression using 𝑥” in the set 𝑌.

Example 1.9.

• The set of square numbers: {𝑥2 ∣ 𝑥 ∈ ℕ}.
• The set of squares of odd numbers: {𝑥2 ∣ 𝑥 ∈ ℕ and 𝑥 is odd}. ⌟
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There are a couple variations on this notation. When the expression using 𝑥 is just
“𝑥”, many people prefer to write the shorthand notation:

𝑌 = {𝑥 ∈ 𝑋 ∣ other conditions}.

It is also common to introduce multiple variables in the right hand side. When this
happens, it means to go through all possible combinations of the variables.

𝑍 = {some expression using 𝑥 and 𝑦 ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, and possibly other conditions}.

Example 1.10.

• The set of odd primes = {𝑥 ∈ ℕ ∣ 𝑥 is odd and 𝑥 is prime}.
• The set of complex numbers, ℂ = {𝑎 + 𝑏𝑖 ∣ 𝑎, 𝑏 ∈ ℝ}. ⌟

~~~

Now, let’s get a bit familiar with common words used to talk about sets.

Definition 1.11. Let 𝐴 and 𝐵 be two sets.

• We say that 𝐴 is a subset of 𝐵, written 𝐴 ⊆ 𝐵, if for all 𝑥 ∈ 𝐴, we also have 𝑥 ∈ 𝐵.
• We say that𝐴 is a superset of 𝐵, written𝐴 ⊇ 𝐵, if for all 𝑥 ∈ 𝐵, we also have 𝑥 ∈ 𝐴.
• We say that 𝐴 = 𝐵 if 𝐴 ⊆ 𝐵 and 𝐴 ⊇ 𝐵. ⌟

𝐴
𝐵

𝐴 ⊆ 𝐵, equivalently 𝐵 ⊇ 𝐴

! Note that in contrast to < and ≤, which makes sense, the symbol ⊂ does not typically
mean “subset but not equal to”. Some authors use it as a synonym for ⊆, others avoid
this symbol entirely. To express “subset but not equal to”, use ⊊.

Definition 1.12. The power set of a set 𝐴, denoted 𝒫(𝐴) is the set of all subsets of 𝐴,
including ∅ (no elements) and 𝐴 (all elements). In other words, 𝐵 ∈ 𝒫(𝐴)means the
same thing as 𝐵 ⊆ 𝐴. ⌟

Example 1.13.

• 𝒫({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}
• There is not really a good way to write down the elements of 𝒫(ℕ) in a list, but for
example, if 𝐴 denotes the set of square numbers, then 𝐴 ⊆ ℕ and 𝐴 ∈ 𝒫(ℕ). ⌟

The power set also allows us to write “for all 𝐴 ⊆ 𝐵”. This just means the same thing
as “for all𝐴 ∈ 𝒫(𝐵)”, and now you can use everything that you learned previously about
quantifying over elements of sets to reason about quantifying over subsets. We often
also use this in set-builder notation, i.e.

{𝐴 ⊆ ℕ ∣ 0 ∈ 𝐴} = {𝐴 ∈ 𝒫(ℕ) ∣ 0 ∈ 𝐴}

is the set of all subsets of ℕ containing 0.
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Basic sets can be put together using the following operations to make new sets.

Definition 1.14.

• (intersection) 𝐴 ∩ 𝐵: the set of elements in both 𝐴 and 𝐵
• (union) 𝐴 ∪ 𝐵: the set of elements in at least one of 𝐴 or 𝐵
• (difference) 𝐴 ⧵ 𝐵: the set of elements in 𝐴 but not 𝐵
• (complement) 𝐴: a shorthand notation for 𝑈 ⧵ 𝐴, where 𝑈 is a set representing
the universe of all possibilities, usually inferred from context. (For example, if we
are talking about subsets of ℕ, then the universe should probably be ℕ.) In formal
situations, you should say explicitly what is 𝑈. ⌟

𝐴 ∩ 𝐵 𝐴 ∪ 𝐵 𝐴 ⧵ 𝐵 𝐴

A tuple is a collection of objects, but unlike a set, it cares about the order in which
things are listed. For example, (1, 2) ≠ (2, 1). You’re probably familiar with these tuples
of length 2, known as ordered pairs, which are commonly used to represent points in
the plane.

Definition 1.15. The Cartesian product of two sets 𝑋 and 𝑌 is the set of ordered pairs

𝑋 × 𝑌 = {(𝑥, 𝑦) ∣ 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌}.

We also write 𝑋𝑛 for the set of ordered 𝑛-tuples of elements from 𝑋. ⌟

Lastly, intervals of real numbers are so commonly used that we give them a special
notation.

Definition 1.16.

• (closed interval) [𝑎, 𝑏] = {𝑥 ∈ ℝ ∣ 𝑎 ≤ 𝑥 ≤ 𝑏} .
• (open interval) (𝑎, 𝑏) = {𝑥 ∈ ℝ ∣ 𝑎 < 𝑥 < 𝑏} (in Europe, ]𝑎, 𝑏[).
• (half-open interval) (𝑎, 𝑏] and [𝑎, 𝑏) are as you expect (in Europe, ]𝑎, 𝑏] and [𝑎, 𝑏[).

Furthermore, 𝑎 or 𝑏may be∞, in which case we always write (), not []. For example,
(2,∞) = {𝑥 ∈ ℝ ∣ 𝑥 > 2}. ⌟

Europe prefers ][ to disambiguate open intervals from ordered pairs. In the US, we
unfortunately have to rely on context, since the notation is the same.

Practice

1. Write the following sets using set-builder notation:
(a) The first quadrant of the plane, where both coordinates are positive.
(b) The set of finite open intervals of ℝ (finite meaning no∞ endpoint(s)).
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2. The following natural language sentences are false. Use words from mathematical
logic (“for all”, “and”, “implies”, etc.) to rewrite them formally. Then, negate them,
i.e. say what must be true in order to disprove the sentence.
(a) There is a natural number bigger than every other natural number.
(b) There are two real numbers with no real numbers between them.
(c) There is a unique solution to the equation 𝑥2+6𝑥+5 = 0 in the real numbers.

3. Just like de Morgan’s laws for logic, with sets we have

𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵 and 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵.

Describe how you would draw a Venn diagram for each one (thus concluding that
they are equal).

4. Express 𝐴 ⧵ 𝐵 using only the symbols 𝐴, 𝐵, ∪, ∩, and .
5. We are also allowed to take infinite unions and infinite intersections. Notations
vary, but if you have an infinite list of sets 𝐴1, 𝐴2, 𝐴3, … , one common way of
writing them is

∞⋃

𝑖=1
𝐴𝑖 and

∞⋂

𝑖=1
𝐴𝑖.

Determine a simple expression for the following sets.

(a)
∞⋃

𝑛=1
(−𝑛, 𝑛)

(b)
∞⋂

𝑛=1
[0, 1𝑛]

(c)
∞⋂

𝑛=1
(0, 1𝑛)

(d)
∞⋃

𝑛=1
[0, 1 − 1

𝑛]

Extensions

These problems describe extra things to think about that might be interesting, but not
fundamental for your future learning. They may be harder.

6. (Construction of ℕ) As stated earlier, most mathematicians have a mental model
consisting of indivisible objects, and sets of those objects (and other sets). However,
some mathematicians called “set theorists” prefer to believe that there are no such
things as “objects”—sets are the only thing we need to care about. Strangely
enough, this is completely fine! Let’s take a peek at how it works.

Without any objects, find an infinite sequence of sets, giving a “definition” for
each of the symbols 0, 1, 2, 3, . . . . (Hint: 0 should probably be “defined as” the
empty set ∅. What other sets can you create without additional objects?)

7. (Russell’s paradox, ) When we defined set-builder notation, we always insisted
that symbols appearing on the left (i.e. 𝑥) always come from a bigger set that we
specify (i.e.𝑋). However, historically, before the early 1900s, mathematicians were
not so picky. They allowed themselves to write things like {𝑥 ∣ 𝑥 is prime} without
worrying about what larger set these primes belong to. (Today, we would write
{𝑥 ∈ ℕ ∣ 𝑥 is prime} or {𝑥 ∣ 𝑥 ∈ ℕ and 𝑥 is prime}.)
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In 1901, Bertrand Russell argued that the historical, less restrictive kind of set-
builder notation was incorrect, because it leads to contradictions in mathematics.
He considered “the set of sets that do not contain themselves”, i.e.

𝑆 = {𝑋 ∣ 𝑋 ∉ 𝑋}.

What is wrong with this so-called “set”? (Hint: Is it true that 𝑆 ∈ 𝑆?)
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2 Introduction to proofs

2.1 How to prove things

The language of mathematics is primarily used to communicate proofs. A proof is a way
of convincing another person that your claim is true, using irrefutable arguments. In
this first section, we’ll give a basic template for you to begin proving things.

Suppose you were asked to prove:

“For all 𝑥 ∈ ℝ, there exists 𝑦 ∈ ℝ such that 𝑦 > 𝑥.

The quantifiers (“for all”, “there exists”) in the sentence provide a useful template for
how you should prove it. From this sentence, the template goes:

• Let someone give me whatever 𝑥 ∈ ℝ they like.
• I will say how to pick a 𝑦 ∈ ℝ (maybe using 𝑥).
• I will use my construction to explain why 𝑦 > 𝑥.

Thus, we get the following proof.

Example 2.1. Prove that for all 𝑥 ∈ ℝ, there exists 𝑦 ∈ ℝ such that 𝑦 > 𝑥. ⌟

Proof. Let 𝑥 ∈ ℝ. Pick 𝑦 = 𝑥 + 1. Then because 𝑥 + 1 > 𝑥, we get 𝑦 > 𝑥.

! In particular, it is standard practice to say how to create things, without explaining
how you figured out what it was you had to create. In the above, we just said “set
𝑦 = 𝑥 + 1” for no apparent reason, and that’s fine for the purpose of a proof, because the
goal is just convince the reader that “there exists” is correct. An author who wants to
communicate their motivations might write something like:

In order to get 𝑦 > 𝑥, it suffices to take 𝑦 = 𝑥 + 1.

or even

In order to get 𝑦 > 𝑥, it suffices to take 𝑦 = 𝑥 + 𝑎 for any 𝑎 > 0, for instance,
𝑦 = 𝑥 + 1 suffices.

But this is not required for proofs, and many authors will choose to “pull things out of
the hat” instead.

As a second example, suppose you were asked to prove, “there exists 𝑥 ∈ ℝ such that
𝑥2 − 2𝑥 − 5 = 0.” By default, a proof of this fact would not involve factoring, quadratic
formula, completing the square, etc. as would be expected from the instruction “show
your work.” Instead, the proof would look like the following.

Example 2.2. Prove that there exists 𝑥 ∈ ℝ such that 𝑥2 − 2𝑥 − 5 = 0. ⌟

Proof. Pick 𝑥 = 1 +
√
6. One verifies (1 +

√
6)2 − 2(1 +

√
6) − 5 = 0, as desired.

Authors that are trying to teach their audience how to solve a problem (rather than
just convincing their audience that the author is right) may choose to phrase their proof
as follows, but this should be considered an advanced phrasing and not the default style
of proof.

12



Proof. In what follows, each line is true if and only if the next line is true:

𝑥2 − 2𝑥 − 5 = 0
𝑥2 − 2𝑥 + 1 = 6

(𝑥 − 1)2 = 6

Thus, it suffices to have 𝑥 − 1 =
√
6 or 𝑥 − 1 = −

√
6. This is satisfied by taking

𝑥 = 1 +
√
6.

~~~

The next three kinds of statements we’ll learn to prove are of the form “not A”, “A
and B”, and “A implies B”. All of these are pretty obvious, but they are worth stating.

• To prove “not A”, negate the sentence by applying de Morgan’s laws, then prove
the resulting sentence.

• To prove “A and B”, prove A, then start a new paragraph and prove B.
• To prove “A implies B”, just assume that A is true, and use that information to
prove B. In particular, there is no need to think about what happens if A is false.

Example 2.3. Prove that there is no smallest positive real number. ⌟

Proof. First, let’s rewrite this natural language sentence logically to make sense of it.

“It is not true that there exists 𝑥 ∈ (0,∞) such that for all 𝑦 ∈ (0,∞), 𝑥 < 𝑦.”
Applying rules to remove the negation, we get:

“For all 𝑥 ∈ (0,∞), there exists 𝑦 ∈ (0,∞) such that 𝑥 ≥ 𝑦.”
So to prove it, we just write:

Let 𝑥 ∈ (0,∞). This means 𝑥 ∈ ℝ and 𝑥 > 0. Pick 𝑦 = 𝑥∕2.

• To prove 𝑦 ∈ (0,∞): Multiply both sides of 𝑥 ≥ 0 by 1∕2 to get 𝑥∕2 ≥ 0, thus
𝑦 ≥ 0. Thus 𝑦 ∈ (0,∞).

• To prove𝑥 ≥ 𝑦: Add𝑥∕2 to both sides of𝑥∕2 ≥ 0 to get𝑥 ≥ 𝑥∕2 = 𝑦 as desired.

This proof also illustrated the fact that when picking 𝑦 to prove “there exists 𝑦 ∈ 𝑌”,
you should also make sure to prove that your choice of 𝑦 really belongs to 𝑌, if this fact
is not obvious.

~~~

The last kind of statement that we’ll discuss are statements of the form “A or B”. To do
this, divide the proof into two cases depending on a statement C that you come up with.
In one case, you assume that C is true and prove A. In the other case, you assume that C
is false and prove B.

Definition 2.4. The absolute value of 𝑥 ∈ ℝ is defined

|𝑥| = {
𝑥 if 𝑥 ≥ 0
−𝑥 if 𝑥 < 0

. ⌟

13



Example 2.5. Prove that for all 𝑥 ∈ ℝ, if |𝑥| ≥ 1, then 𝑥 ≤ −1 or 𝑥 ≥ 1. ⌟

Proof. Let 𝑥 ∈ ℝ. Assume |𝑥| ≥ 1. Break into cases depending on whether or not 𝑥 ≥ 0.

• Suppose 𝑥 ≥ 0. By definition, |𝑥| = 𝑥. Thus, 𝑥 = |𝑥| ≥ 1.
• Suppose 𝑥 < 0. By definition, |𝑥| = −𝑥. Thus, −𝑥 = |𝑥| ≥ 1. Thus 𝑥 ≤ 1.

Note that sometimes, even when the thing you are trying to prove doesn’t look like
“A or B”, it could still be helpful to think about breaking a problem into cases. That’s
especially the case when using definitions involving cases in the first place, like the
absolute value definition above.

~~~

To summarize, we have the following table:

Statement type How to prove it

for all 𝑥 ∈ 𝑋, A “Someone gives me 𝑥 ∈ 𝑋.” Then
prove A.

there exists 𝑥 ∈ 𝑋 such
that A “I pick 𝑥 ∈ 𝑋 to be . . . .” Then prove A.

A implies B Add A to my knowledge, then prove B.
A and B Prove A. Prove B.

A or B
Pick cases based on C. In one case,
assume C and prove A. In the other
case, assume [not C] and prove B.

Practice

1. Is the following proof correct? If correct, explain. If not correct, say what is wrong
and provide a corrected proof.

Example 2.6. Prove that for all 𝑎, 𝑏, 𝑐 ∈ ℝ, if 𝑏2 − 4𝑎𝑐 ≥ 0, then there exists
𝑥 ∈ ℝ such that 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. ⌟

Proof. Let 𝑎, 𝑏, 𝑐 ∈ ℝ. We complete the square. Each of the following lines follows
from the previous line.

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

𝑥2 + 𝑏
𝑎𝑥 +

𝑐
𝑎 = 0

(𝑥 + 𝑏
2𝑎)

2
= ( 𝑏2𝑎)

2
− 𝑐
𝑎

𝑥 + 𝑏
2𝑎 = ±

√
𝑏2 − 4𝑎𝑐
4𝑎2

𝑥 = −𝑏 ±
√
𝑏2 − 4𝑎𝑐
2𝑎

For this to be a real number, we need 𝑏2 − 4𝑎𝑐 ≥ 0, as was to be shown.
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2. Determine if the following sentences are true or false. If true, prove it. If false,
prove the negation.
(a) There are numbers 𝑐 ∈ ℕ and 𝑁 ∈ ℕ such that for all 𝑛 ∈ ℕ, if 𝑛 ≥ 𝑁, then

𝑐𝑛 ≥ 3𝑛 + 10.
(b) There are numbers 𝑐 ∈ ℕ and 𝑁 ∈ ℕ such that for all 𝑛 ∈ ℕ, if 𝑛 ≥ 𝑁, then

𝑐𝑛 ≥ 𝑛2.
(This is asymptotic growth, an important concept in analysis and computer science!)

3. Prove that for all 𝑥, 𝑦 ∈ ℝ, the expression

𝑥 + 𝑦 + |𝑥 − 𝑦|
2

is either equal to 𝑥 or 𝑦. (What is the common name for this expression?)
4. (a) Prove that for all 𝑥 ∈ ℝ, we have 𝑥 ≤ |𝑥|.

(b) Prove the triangle inequality: for all 𝑥, 𝑦 ∈ ℝ,

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦|.

5. ( ) Determine if the following sentences are true or false. If true, prove it. If
false, prove the negation. (You will need to use the previous problem.)
(a) For all 𝜖 ∈ ℝ, if 𝜖 > 0, there exists 𝛿 ∈ ℝ such that 𝛿 > 0 and for all 𝑥, 𝑦 ∈ ℝ,

if 𝑥 > 0, 𝑦 > 0, and |𝑥 − 𝑦| < 𝛿, then |
√
𝑥 −

√
𝑦| < 𝜖.

(b) For all 𝜖 ∈ ℝ, if 𝜖 > 0, there exists 𝛿 ∈ ℝ such that 𝛿 > 0 and for all 𝑥, 𝑦 ∈ ℝ,
if |𝑥 − 𝑦| < 𝛿, then |𝑥2 − 𝑦2| < 𝜖.

(This is uniform continuity, an important concept in real analysis!)

Extensions

These problems describe extra things to think about that might be interesting, but not
fundamental for your future learning. They may be harder.

6. (Nonconstructive existence, ) While typically, when asked to prove “there exists
𝑥”, you should pick an 𝑥 and show that it works, that is not the only way to prove
“there exists 𝑥”. When you prove this without specifying exactly how you can get
𝑥, it is called a nonconstructive proof.

Recall that rational number is 𝑎∕𝑏 for some 𝑎, 𝑏 ∈ ℤ, and irrational numbers
are those in ℝ that cannot be expressed as such.

√
2 is irrational. (We will prove

this in a few lessons.) Prove that there exists two irrational numbers 𝑥, 𝑦 ∈ ℝ such
that 𝑎𝑏 is rational. (Hint: Think about (

√
2)
√
2 and consider a proof by cases.)
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2.2 How to use things

So far, we’ve been proving theorems and identities from scratch. Butmost ofmathematics
is about building on top of theorems that other people have already proven. Let’s talk
about how to use more complicated assumptions, theorems, and definitions.

In summary, when you use a statement, everything is the opposite of what you would
do if you were trying to prove it. We have the following summary table. Read this table
carefully, and make sure each row makes sense to you.

When proving When using

for all 𝑥 ∈ 𝑋, A “Someone gives me 𝑥 ∈ 𝑋.”
Then prove A.

“I pick 𝑥 ∈ 𝑋 to be . . . .”
Then add A to my
knowledge.

there exists 𝑥 ∈ 𝑋
such that A

“I pick 𝑥 ∈ 𝑋 to be . . . .”
Then prove A.

“Someone gives me 𝑥 ∈ 𝑋.”
Then add A to my
knowledge.

A implies B Add A to my knowledge,
then prove B.

Prove A, then add B to my
knowledge.

A and B Prove A. Prove B. Add A to my knowledge.
Add B to my knowledge.

A or B

Pick cases based on C. In
one case, assume C and
prove A. In the other case,
assume [not C] and prove B.

Get cases. In one case, add
A to my knowledge. In the
other case, add B to my
knowledge.

Let us practice using statements. The following is a true statement that we will use.

Theorem 2.7. For all 𝑥 ∈ ℝ, if 𝑥 ≥ 0, there exists 𝑦 ∈ ℝ such that 𝑦 ≥ 0 and 𝑦2 = 𝑥. ⌟

(This theorem just says “positive square roots exist”, i.e. 𝑦 =
√
𝑥. Real square roots

don’t exist for negative 𝑥! This is not as obvious as you think, since we would have to
first understand what real numbers really are before proving it.) To use this theorem,
the template is:

• I will pick 𝑥 ∈ ℝ.
• I will prove that 𝑥 ≥ 0.
• Let someone give me 𝑦 ∈ ℝ.
• They guarantee to me that 𝑦 ≥ 0 and 𝑦2 = 𝑥.

Example 2.8. Prove that for all 𝑎 ∈ ℝ, if 𝑎 ≥ 0, there exists 𝑏 ∈ ℝ such that 𝑏 ≥ 0 and
𝑏4 = 𝑎. ⌟

Proof. Let 𝑎 ∈ ℝ. Assume 𝑎 ≥ 0.

• In order to pick 𝑏, I want to use Theorem 2.7. I pick 𝑥 in the theorem to be 𝑎, and
I know 𝑥 = 𝑎 ≥ 0. The theorem gives me 𝑦 ∈ ℝ such that 𝑦2 = 𝑎 and 𝑦 ≥ 0. Call
this number 𝑐 (i.e. 𝑐2 = 𝑎 and 𝑐 ≥ 0).
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• I will use Theorem 2.7 again. I pick 𝑥 in the theorem to be 𝑐, and I know 𝑥 = 𝑐 ≥ 0.
The theorem gives me 𝑦 ∈ ℝ such that 𝑦2 = 𝑐 and 𝑦 ≥ 0. This time, I will call this
number 𝑏 (i.e. 𝑏2 = 𝑐 and 𝑏 ≥ 0), which is the number I was hoping to pick.

Then 𝑏4 = 𝑐2 = 𝑎, and 𝑏 = 𝑑 ≥ 0, as desired.

You might have noticed that the proof is already getting a bit wordy. In fact, most
mathematicians do not write to this level of detail. A proof is really a social object: a
method of communication between author and reader. Most mathematicians assume
that the reader can fill in some of the boilerplate and reorder the logic by themselves. In
that case, they might just write the following. You should only write like this if you are
first comfortable writing out all the full details, and that is getting boring and tedious.

Proof. By applying Theorem 2.7 on 𝑎, there exists 𝑐 ∈ ℝ such that 𝑐2 = 𝑎 and 𝑐 ≥ 0.
Applying it again on 𝑐, we get 𝑏 ∈ ℝ such that 𝑏2 = 𝑐 and 𝑏 ≥ 0. Thus, 𝑏4 = 𝑐2 = 𝑎 and
𝑏 ≥ 0.

Note that if you are trying to prove “A implies B” and the sentence A involves
quantifiers, the proof template should be similar to considering it a “theorem”. We’ll see
an example next.

~~~

The vast majority of proofs in mathematics rely on definitions. So far, we’ve relied
on properties that you’ve already learned about ℝ and ℕ to write proofs. Now, and
throughout the rest of your mathematical career, you’ll see new definitions to talk about
new objects. Unlike definitions in English, which can be argued about and may change
over time, mathematical definitions are hard laws that we agree upon.

Definition 2.9.

• A number 𝑛 ∈ ℕ is even if there exists 𝑘 ∈ ℕ such that 𝑛 = 2𝑘.
• A number 𝑛 ∈ ℕ is odd if there exists 𝑘 ∈ ℕ such that 𝑛 = 2𝑘 + 1. ⌟

Example 2.10. Prove that the sum of two odd numbers is even. ⌟

Proof. Again, let’s rewrite this natural language sentence logically to make sense of it.

“For all 𝑛 ∈ ℕ and𝑚 ∈ ℕ, if 𝑛 is odd and𝑚 is odd, then 𝑛 + 𝑚 is even.”

So to prove it, we write:
Let 𝑛 ∈ ℕ and𝑚 ∈ ℕ. Assume 𝑛 and𝑚 are odd. We are trying to prove that 𝑛 + 𝑚

is even. By definition of even, this means we have to prove “there exists 𝑎 ∈ ℕ such that
𝑛 + 𝑚 = 2𝑎.”

By definition of odd, let someone give me 𝑘 ∈ ℕ and 𝓁 ∈ ℕ such that 𝑛 = 2𝑘 + 1
and𝑚 = 2𝓁 + 1. Pick 𝑎 = 𝑘 + 𝓁 + 1. Then

𝑛 + 𝑚 = (2𝑘 + 1) + (2𝓁 + 1)
= 2(𝑘 + 𝓁 + 1)
= 2𝑎,

as desired.
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Written more concisely, this proof would look like:

Proof. Let 𝑛 = 2𝑘 + 1 and𝑚 = 2𝓁 + 1 for some 𝑘, 𝓁 ∈ ℕ. Then,

𝑛 + 𝑚 = (2𝑘 + 1) + (2𝓁 + 1)
= 2(𝑘 + 𝓁 + 1),

thus picking 𝑎 = 𝑘 + 𝓁 + 1 proves that 𝑛 + 𝑚 = 2𝑎, and 𝑛 + 𝑚 is even.

Here are a few more definitions that will be used in the exercises.

Definition 2.11. Recall that ℤ denotes the integers {… , −2, −1, 0, 1, 2, … }.

• Given numbers 𝑎, 𝑏 ∈ ℤ, we write 𝑎 ∣ 𝑏 (and say, “𝑎 divides 𝑏”) if there exists
𝑘 ∈ ℤ such that 𝑏 = 𝑘𝑎.

• Given numbers 𝑎, 𝑏, 𝑛 ∈ ℤ, we say that 𝑎 ≡ 𝑏 (mod 𝑛) if 𝑛 ∣ 𝑎 − 𝑏. ⌟

For example, 2 ≡ 37 (mod 5) because 5 ∣ 37 − 2, because 37 − 2 = 35 and 35 = 5𝑘
when 𝑘 = 7.

Practice

1. Prove that for all 𝑛 ∈ ℕ, if 𝑛 is odd, then 𝑛2 is odd.
2. Recall the theorem known as the zero product property:

Theorem 2.12. For all 𝑎, 𝑏 ∈ ℝ, if 𝑎𝑏 = 0, then 𝑎 = 0 or 𝑏 = 0. ⌟

Use the zero product property to formally prove that for all 𝑥 ∈ ℝ, if 𝑥2+𝑥−6 =
0, then 𝑥 = −3 or 𝑥 = 2.

3. Remember that in this class,ℕ includes 0. Is the following an equivalent definition
of odd?

“A number 𝑛 ∈ ℕ is odd if there exists𝑚 ∈ ℕ such that 𝑛 = 2𝑚 − 1.”

If not, give an example of a number that odd in one definition but not the other.
If so, prove that a number 𝑛 ∈ ℕ satisfies this definition of odd if and only if it
satisfies the definition given in the lesson.

4. Verify (i.e. prove) the following basic properties of ≡ (mod 𝑘). These properties
allow us to domodular arithmetic.
(a) For all 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, if 𝑎 ≡ 𝑏 (mod 𝑛) and 𝑐 ≡ 𝑑 (mod 𝑛), then 𝑎+𝑐 ≡ 𝑏+𝑑

(mod 𝑛). (Therefore we can add as if ≡ was a normal = sign.) Say quickly
why this also means we can subtract as if ≡ was a normal = sign.

(b) For all 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, if 𝑎 ≡ 𝑏 (mod 𝑛) and 𝑐 ≡ 𝑑 (mod 𝑛), then 𝑎𝑐 ≡ 𝑏𝑑
(mod 𝑛). (Therefore we can multiply as if ≡ was a normal = sign. We also
automatically get that 𝑎 ≡ 𝑏 (mod 𝑛) implies 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛), by applying
this fact with 𝑐 = 𝑎 and 𝑑 = 𝑏 many times.)

(c) Prove that the following is false: For all 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, if 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛)
and 𝑐 ≡ 𝑑 (mod 𝑛), then 𝑎 ≡ 𝑏 (mod 𝑛). (Therefore, we generally cannot do
division in modular arithmetic.)

5. Prove that if 𝑛 is even, then 3 ∣ 2𝑛 − 1.
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Extensions

These problems describe extra things to think about that might be interesting, but not
fundamental for your future learning. They may be harder.

6. (Reasoning from axioms, ) For most of this section, we focused on reasoning
from theorems, assumptions, and definitions. There is a special kind of definition,
which lists several axioms (basic properties) for the object.

Here is one example. A group is a set 𝐺 with an operation, usually denoted ⋅
(though it might be different from the multiplication that you’re familiar with),
satisfying a set of axioms. Like normal multiplication, we often write 𝑎𝑏 instead
of 𝑎 ⋅ 𝑏 as notation. The axioms of a group are:

• (closure) For all 𝑎, 𝑏 ∈ 𝐺, 𝑎𝑏 ∈ 𝐺.
• (associativity) For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐.
• (identity) There exists 𝑒 ∈ 𝐺 such that for all 𝑎 ∈ 𝐺, 𝑒𝑎 = 𝑎𝑒 = 𝑎. (The
element 𝑒 is called the identity.)

• (inverse) For all 𝑎 ∈ 𝐺, there exists an element 𝑏 such that 𝑎𝑏 = 𝑏𝑎 = 𝑒. (We
typically write 𝑎−1 as notation for this 𝑏.)

(a) Are the following sets with operations groups?
i. The set of integers ℤ with the standard + operation.
ii. The set of strings of English letters (like “yes”, “ilny”, “”) with the

concatenation operation ++ (in which “yes” ++ “ilny” = “yesilny”).
iii. The set of rationals ℚ with the standard ⋅ operation.
iv. The following set of 8 actions on the plane (rotations counterclockwise):

• do nothing
• rotate 90◦
• rotate 180◦
• rotate 270◦
• flip across 𝑥-axis
• flip across 𝑥-axis then rotate 90◦
• flip across 𝑥-axis then rotate 180◦
• flip across 𝑥-axis then rotate 270◦

The operation is the word “then”.
(b) Prove the following facts about all groups (𝐺, ⋅) using the axioms.

i. The identity is unique (so we are justified in calling it the identity). In
other words, for all 𝑒1, 𝑒2 ∈ 𝐺, if for all 𝑎 ∈ 𝐺, 𝑒1𝑎 = 𝑎𝑒1 = 𝑎 and
𝑒2𝑎 = 𝑎𝑒2 = 𝑎, then 𝑒1 = 𝑒2.

ii. Inverses are unique (so the notation 𝑎−1 is not ambiguous). In other
words, for all 𝑎, 𝑏1, 𝑏2 ∈ 𝐺, if 𝑎𝑏1 = 𝑏1𝑎 = 𝑒 and 𝑎𝑏2 = 𝑏2𝑎 = 𝑒, then
𝑏1 = 𝑏2.

iii. The shoes and socks theorem: you can put on your socks and then your
shoes, but to remove them, your shoes come off first, then your socks.
In other words, for all 𝑎, 𝑏 ∈ 𝐺, (𝑎𝑏)−1 = 𝑏−1𝑎−1.

iv. Give an example of a group 𝐺 and two elements 𝑎, 𝑏 ∈ 𝐺 such that
(𝑎𝑏)−1 ≠ 𝑎−1𝑏−1. (Hint: one of the above examples works.)
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3 Advanced proof techniques

While the basic proof techniques from the previous section work for a very large number
of statements, some statements require more advanced techniques.

3.1 Induction

Suppose you were asked to prove the following theorem.

Theorem 3.1. All natural numbers are even or odd. ⌟

First, why is this not obvious? We defined “even” to mean 2𝑘, and “odd” to mean
2𝑘 + 1. Nothing about the definition directly implies that these two cases are exhaustive.
That means we need proof.

Previously, we learned that the standard way to prove “A or B” is to take cases based
on something, then in one case prove A, and in the other case prove B. But unlike the
examples with absolute value, there is nothing particularly obvious to take cases on.

What’s missing is that the truth of this sentence depends crucially on what the set of
natural numbers ℕ actually is. For example, it’s certainly false that all real numbers are
either even or odd. Thus, to prove the theorem, wemust use some property of ℕ that is
false for ℝ. We cannot just use logic and arithmetic—those things work for ℝ too!

The key property of ℕ is known as the principle of induction, as follows:

Theorem 3.2 (Principle of induction). Suppose A(𝑛) is a sentence that depends on 𝑛, and
you want to prove the sentence “for all 𝑛 ∈ ℕ, A(𝑛) is true.” Then it is enough to prove:

• A base case, that A(0) is true, and
• An inductive step, that assuming you already know that A(0),A(1),A(2), … ,A(𝑛−1)
are true, A(𝑛) is also true. ⌟

knowledge base

A(0) A(1) A(2) A(3)

A(4)?

In other words,ℕ has the property that you can prove sentences aboutℕ one number
at a time, relying on previous numbers to help you reason about future numbers. Let’s
see an example of how this works.

Example 3.3. Prove that all natural numbers are either even or odd. ⌟

Proof. We will prove the theorem using induction. Let 𝑛 ∈ ℕ.

• Base case (𝑛 = 0): The number 0 is even, as 0 = 2𝑘 where 𝑘 = 0. Thus, 0 is even
or odd.

• Inductive step: We want to show that 𝑛 is either even or odd, assuming that
everything less than 𝑛 is already known to be even or odd. In particular, we know
that 𝑛 − 1 is even or odd. Take cases.
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– Suppose 𝑛 − 1 is even. That means 𝑛 − 1 = 2𝑘 for some 𝑘 ∈ ℕ. Then,
𝑛 = 2𝑘 + 1, so 𝑛 is odd. Thus 𝑛 is even or odd.

– Suppose 𝑛 − 1 is odd. That means 𝑛 − 1 = 2𝑘 + 1 for some 𝑘 ∈ ℕ. Let
𝓁 = 𝑘 + 1. Then 𝑛 = 2𝑘 + 2 = 2𝓁, so 𝑛 is even. Thus 𝑛 is even or odd.

~~~

Note that we actually didn’t use the full power of induction in the above example, we
only used A(𝑛−1). This is rather typical—it’s rare to have an induction argument where
you actually need to use all of A(0),A(1), … ,A(𝑛−1) to prove A(𝑛). In other words, if we
drew a picture that shows which statements were used to prove which other statements,
our proof above only used the black edges below, but we are actually also allowed to use
all of the gray dashed edges.

A(0) A(1) A(2) A(3) A(4) A(5)

For another example, take the following problem.

Example 3.4. Define the Fibonacci numbers to be 𝐹1 = 1, 𝐹2 = 1, and 𝐹𝑛 = 𝐹𝑛−1+𝐹𝑛−2
for all 𝑛 ∈ ℕ with 𝑛 ≥ 3. Prove that for all 𝑛 ∈ ℕ, if 𝑛 ≥ 1, then 𝐹𝑛 < 2𝑛. ⌟

Based on the problem statement, we’ll choose to use the edges depicted in the
following picture. In other words we will prove two base cases: A(1) and A(2), then
primarily rely on A(𝑛−2) and A(𝑛−1) to prove A(𝑛), just like the definition of Fibonacci
numbers.

A(0) A(1) A(2) A(3) A(4) A(5)

Proof. By induction.

• Base cases (𝑛 = 1 and 𝑛 = 2): Certainly 𝐹1 = 1 < 21 = 2, and 𝐹2 = 1 < 22 = 4.
• Inductive step: Since we are working step by step, we already know that 𝐹1 < 21,
𝐹2 < 22, . . . , and 𝐹𝑛−1 < 2𝑛−1, and we want to prove 𝐹𝑛 < 2𝑛. But as we hinted
earlier, we’re not going to use all of these. We will just use

𝐹𝑛−1 < 2𝑛−1 and 𝐹𝑛−2 < 2𝑛−2.
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Thus, we get that

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2
< 2𝑛−1 + 2𝑛−2

= 3
2 ⋅ 2

𝑛−1

< 2𝑛,

as was to be shown.

Here is one more induction using a different structure. In this example, we really
use more of our knowledge base A(0),A(1), … ,A(𝑛 − 1), not just the last few cases.

Definition 3.5. A number 𝑛 ∈ ℕ is called prime if it cannot be written as 𝑎𝑏 for some
𝑎, 𝑏 ∈ ℕ, where 𝑎 < 𝑛 and 𝑏 < 𝑛. ⌟

Theorem 3.6 (Fundamental Theorem of Arithmetic). Every 𝑛 ∈ ℕ with 𝑛 ≥ 2 can be
written as the product of prime numbers. In other words, prime factorizations exist. ⌟

Proof. We will prove the theorem using induction.

• Base case (𝑛 = 2): 2 itself is prime, so it is certainly a product of primes (a single
prime).

• Inductive step: We know that the numbers 2, 3, 4, … , 𝑛 − 1 can be written as a
product of primes, and our goal is to show how 𝑛 can be written as a product of
primes. Take two cases.
– If 𝑛 is prime, then just like the base case, it is a product of primes.
– If 𝑛 is not prime, then by definition of prime, 𝑛 = 𝑎𝑏 for some 𝑎, 𝑏 ∈ ℕwhere
𝑎 < 𝑛 and 𝑏 < 𝑛. So 𝑎 and 𝑏 can be written as a product of primes, and thus
so can 𝑛 = 𝑎𝑏.

~~~

In some more difficult instances of induction, you will need to prove something
different than what you are actually asked to prove. That sounds strange, but consider
the following.

Example 3.7. Prove that for all 𝑛 ∈ ℕ, if 𝑛 ≥ 1, then

1 + 1
4 +

1
9 +⋯+ 1

𝑛2 < 2. ⌟

Proof. Suppose we tried to prove this statement directly by induction. We would write
something like the following.

• Base case (𝑛 = 1): Certainly 1 < 2.
• Inductive step: We want to show that

1 + 1
4 +

1
9 +⋯+ 1

𝑛2 < 2,
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and our knowledge base consists of

1 < 2, 1 + 1
4 < 2, ⋯ , 1 + 1

4 +⋯+ 1
(𝑛 − 1)2

< 2.

But none of these are helpful! I want to add 1∕𝑛2 the left hand side of the last
inequality, but adding 1∕𝑛2 to the right hand side makes the right hand size
certainly too big.

Instead, the solution is very creative: instead of proving the original inequality, we
will prove a stronger inequality. It might surprising that it is easier to prove something
stronger than something weaker. But really, this shouldn’t be surprising at all—the
stronger, more powerful inequalities are also going into your knowledge base for you to
use! We will show that for all 𝑛 ∈ ℕ, if 𝑛 ≥ 1, then

1 + 1
4 +

1
9 +⋯+ 1

𝑛2 ≤ 2 − 1
𝑛 .

• Base case (𝑛 = 1): Certainly 1 ≤ 2 − 1∕1 = 1.
• Inductive step: From our knowledge base, we have the claim for 𝑛 − 1, that is,

1 + 1
4 +

1
9 +⋯+ 1

(𝑛 − 1)2
≤ 2 − 1

𝑛 − 1.

Now if we add 1∕𝑛2 to both sides, we get

1 + 1
4 +

1
9 +⋯+ 1

𝑛2 ≤ 2 − 1
𝑛 − 1 +

1
𝑛2

< 2 − 1
𝑛 − 1 +

1
𝑛(𝑛 − 1)

= 2 − 𝑛
𝑛(𝑛 − 1)

+ 1
𝑛(𝑛 − 1)

= 2 − 𝑛 − 1
𝑛(𝑛 − 1)

= 2 − 1
𝑛 ,

as desired.

Now, we can get the original intended conclusion of

1 + 1
4 +

1
9 +⋯+ 1

𝑛2 ≤ 2 − 1
𝑛 < 2.

Figuring out the right way to strengthen the claim is often a very difficult part of
an induction proof: there is no clear-cut method. But if you try lots of examples, and
can hypothesize that a stronger version of the claim is actually true, it is almost always
helpful in induction to try to prove a stronger claim than a weaker claim. Remember—a
stronger claim gives you a stronger knowledge base to work with!
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Practice

1. Read the following attempted solution using induction.

Example 3.8. On a certain island, there are 𝑛 cities, 𝑛 ≥ 2, some of which are
connected by (two-way) roads. If each city is connected by a road to at least one
other city, is it true that you can travel from any city to any other city along the
roads? ⌟

Solution. Yes, it is true. We proceed by induction on 𝑛.

• Base case (𝑛 = 2): If there are two cities, and each city is connected by a
road to at least one other city, then the two cities are connected to each other,
and you can travel from any city to any other city.

• Inductive step: From our knowledge base, we know that the claim is true
when there are 𝑛 − 1 cities. To prove that it’s also true for 𝑛 cities, we add
another city to this island. This new city is connected by a road to at least
one of the old cities. From the claim on 𝑛 − 1 cities, we know that once we
get there, we can go to any other city. Thus you can travel from the new city
to any other city, as well as between any two of the old cities, as claimed.

(a) Show that the answer is actually false by providing a counterexample to the
claim.

(b) State exactly which part of the argument went wrong.

2. In Problem 3.1.4(b), we said that for all 𝑎, 𝑏, 𝑛 ∈ ℕ, if 𝑎 ≡ 𝑏 (mod 𝑛), then for
all 𝑘 ∈ ℕ, 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛), by “applying a fact many times.” Formalize that
argument using induction.

3. We proved that all natural numbers are even or odd. Can we conclude from this
fact that “not even” means the same thing as “odd”, and “not odd” means the same
thing as “even”? If so, explain. If not, prove this fact.

4. Prove by induction that for all 𝑛 ∈ ℕ, if 𝑛2 is even, then 𝑛 is even. (You may use
as a fact that sums and differences of even numbers is even—these proofs look
nearly identical to “odd + odd = even” that we did last section.)

Note that induction is not the bestway to prove this fact. It is overly complicated.
We will discuss an easier way to prove this fact in the next section.

5. A 2𝑛 × 2𝑛 grid has one of the center 4 squares removed. Prove that for all 𝑛 ∈ ℕ,
you can always cover the rest of the grid using L-shaped trominoes. An example
for is shown below.
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Extensions

These problems describe extra things to think about that might be interesting, but not
fundamental for your future learning. They may be harder.

6. (Programming is induction, ) When programming, it is important that your
code is correct. That means on every possible input, your output matches the
desired output. Programmers in real life find verifying correctness to be too tedious
and not worth the effort, so they’ll just try 10 inputs and call it a day (that’s why
published code has bugs) but as mathematicians we can formally prove that the
code works on all inputs, and the key is almost always induction!

Let𝐴 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−1] be an array of length 𝑛. (An array is just a finite list
of elements, and in the spirit of programming we start at 0.) Consider the following
code, which I’vewritten in away so that hopefully, you can translate to your favorite
programming language easily, or even if you don’t know programming, you can
understand what it means.

• Set𝑚 = −∞ and 𝑖 = 0.
• Run the following block 𝑛 times.

– If 𝑎𝑖 > 𝑚, set𝑚 = 𝑎𝑖.
– Set 𝑖 = 𝑖 + 1 (i.e. increment 𝑖).

• Output𝑚.

Prove that the program outputs the largest number in 𝐴, or −∞ if 𝐴 is empty.
(Hint: find a statement that is true every iteration, and prove that with induction.)

7. (Division theorem, ) In elementary school, you learned how to divide natural
numbers, leaving a quotient and remainder. In most math now, division usually
means that we are okay with ending up with fractions, but for this question, we’ll
consider the old quotient-and-remainder meaning of division instead.

Prove that for all 𝑎, 𝑏 ∈ ℕ, if 𝑏 > 0, there exist unique 𝑞, 𝑟 ∈ ℕ such that
𝑎 = 𝑏𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑏. The number 𝑞 is called the quotient and 𝑟 is called the
remainder. “Exists unique” means that you should prove two things:
(a) For all 𝑎, 𝑏 ∈ ℕ, if 𝑏 > 0, there exist 𝑞, 𝑟 ∈ ℕ such that 𝑎 = 𝑏𝑞 + 𝑟 and

0 ≤ 𝑟 < 𝑏.
(b) For all 𝑎, 𝑏, 𝑞1, 𝑞2, 𝑟1, 𝑟2 ∈ ℕ, if 𝑎 = 𝑏𝑞1 + 𝑟1, 𝑎 = 𝑏𝑞2 + 𝑟2, 0 ≤ 𝑟1 < 𝑏, and

0 ≤ 𝑟2 < 𝑏, then 𝑞1 = 𝑞2 and 𝑟1 = 𝑟2.
The fact that you can do division in ℕ sounds trivial until you consider what other
systems allow or don’t allow division.
(c) ℚ[𝑥] is the set of polynomials with coefficients inℚ, such as 𝑥3+2𝑥+1∕2 = 0.

Formally,

ℚ[𝑥] = {𝑎𝑛𝑥𝑛 +⋯+ 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 ∣ 𝑎𝑛, … , 𝑎0 ∈ ℚ and 𝑛 ∈ ℕ}.

Sketch how to modify the above argument to show the division theorem for
ℚ[𝑥]. That is, for all 𝑎(𝑥), 𝑏(𝑥) ∈ ℚ[𝑥], there exist unique 𝑞(𝑥), 𝑟(𝑥) ∈ ℚ[𝑥]
such that 𝑎(𝑥) = 𝑏(𝑥)𝑞(𝑥) + 𝑟(𝑥) and 0 ≤ deg(𝑟) < deg(𝑏), where deg
denotes the degree of the polynomial (the exponent of the largest term).

(d) Show that the same statement for ℤ[𝑥] is false.
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3.2 Contrapositive and contradiction

Earlier, we proved that for all 𝑛 ∈ ℕ, if 𝑛 is odd, then 𝑛2 is odd. It’s very similar to show
that if 𝑛 is even, then 𝑛2 is even. What about the opposite, that if 𝑛2 is even, then 𝑛
is even? In Problem 3.1.4, you proved (or will prove) using induction that this is true,
but the induction proof is rather convoluted and long. A much easier way is to use the
contrapositive.

The contrapositive of “A implies B” is the sentence “[not B] implies [not A]”. We can
verify that these are equivalent using a truth table.

A B A implies B
0 0 1
0 1 1
1 0 0
1 1 1

A B not B not A [not B] implies [not A]
0 0 1 1 1
0 1 0 1 1
1 0 1 0 0
1 1 0 0 1

At the same time, think about a few examples to make sure this makes intuitive
sense to you. For instance, “if I go swimming, I will get wet” means the same thing as
“if I do not get wet, I did not go swimming.”

! The contrapositive is not the same as the converse. The converse of “A implies B” is
“B implies A”. For example, the converse of “if I go swimming, I will get wet” is “if I got
wet, then I went swimming.” That’s not true—maybe it was just raining heavily.

Applied the contrapositive to this problem about even squares, we get the following
proof.

Example 3.9. Prove that for all 𝑛 ∈ ℕ, if 𝑛2 is even, then 𝑛 is even. ⌟

Proof. We prove by contrapositive. The statement is equivalent to

For all 𝑛 ∈ ℕ, if 𝑛 is not even, then 𝑛2 is not even.
In Problem 3.1.3, you proved (or will prove that) a number is not even if and only if it is
odd, and not odd if and only if it is even. Thus, this is equivalent to

For all 𝑛 ∈ ℕ, if 𝑛 is odd, then 𝑛2 is odd.
We proved this in Problem 2.2.1.

~~~

Another spiritually similar technique is called proof by contradiction. To do a proof by
contradiction, if your goal is to prove A, instead prove “[not A] implies false”. “False”
means any statement that is clearly not true, for example 0 = 1 or “C and [not C]” for
some sentence C.

Example 3.10. Prove that for all 𝑛,𝑚 ∈ ℕ, if 𝑛 ≥ 2 and 𝑛 ∣ 𝑚, then 𝑛 ∤ 𝑚 + 1. (The
symbol ∤means “not divisible by”.) ⌟

Proof. Weprove by contradiction. The negation of the sentence is, “There exists𝑛,𝑚 ∈ ℕ
such that 𝑛 ≥ 2, 𝑛 ∣ 𝑚, and 𝑛 ∣ 𝑚 + 1”. By definition, this means there exists 𝑘, 𝓁 ∈ ℕ
such that 𝑚 = 𝑛𝑘 and 𝑚 + 1 = 𝑛𝓁. Subtracting, we find that 1 = 𝑛(𝑘 − 𝓁). Take two
cases.
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• Case 1: 𝑘 − 𝓁 = 0. Then 1 = 0, contradiction.
• Case 2: 𝑘 − 𝓁 ≥ 1. Then 1 ≥ 2(𝑘 − 𝓁) ≥ 2, contradiction.

Proof by contradiction is often difficult, because you will need some creativity to
figure out how to reach an absurd conclusion. The basic proof templates that we learned
before no longer really apply.

~~~

Proof by contradiction is useful because it gives you more knowledge to work with.
In other words, it can be hard to prove a sentence A, when you don’t know very much
about the elements in the sentence. But when you use proof by contradiction, you gain
knowledge by adding [not A] to your knowledge base.

Also note that proof by contradiction is extremely common when you asked to prove
that something is false. For instance, in the previous problem, you were asked to prove
𝑛 ∤ 𝑚 + 1. If you actually tried to negate the definition of “divides”, you would get, “for
all 𝑘 ∈ ℕ,𝑚 + 1 ≠ 𝑛𝑘.” This feels very hard to prove! By using proof by contradiction,
we not only gain knowledge to use in our proof, but we can also avoid negating the
complicated definition.

Here is one more classic example. In this case, we know what it means for a number
to be rational: 𝑎∕𝑏 for some integers 𝑎 and 𝑏. The definition of “irrational” is simply
“not rational”, but again, the negated definition is hard to work with. Instead, use proof
by contradiction!

Example 3.11. Prove that
√
2 is irrational. (Assume for free that fractions of integers

can be expressed in “lowest terms”, so that the numerator and denominator share no
common factors apart from 1.) ⌟

Proof. We prove by contradiction. Assume that
√
2 is rational. That means that there

exists 𝑎, 𝑏 ∈ ℤ such that
√
2 = 𝑎∕𝑏 and 𝑎 and 𝑏 share no common factors apart from 1.

From this equation, we get
√
2 = 𝑎

𝑏

2 = 𝑎2
𝑏2

2𝑏2 = 𝑎2

Because 𝑎2 = 2𝑘 where 𝑘 = 𝑏2, 𝑎2 is even. By Example 3.9, this means 𝑎 is even. Thus,
there exists 𝓁 ∈ ℕ such that 𝑎 = 2𝓁. Thus,

2𝑏2 = (2𝓁)2

2𝑏2 = 4𝓁2

𝑏2 = 2𝓁2

For the same reasons, now 𝑏 is even. This is a contradiction, because 𝑎 and 𝑏 share no
common factors apart from 1.

~~~
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Lastly, to comment on the difference between contrapositive and contradiction, one can
view each as a special case of the other, so it is really just a matter of perspective. In one
way, every proof by contrapositive is a proof by contradiction: “Suppose A implies B is
false, so A and [not B]. Then, here is my proof by contrapositive that [not B] implies [not
A]. Thus, I know A and [not A], contradiction.” Likewise, every proof by contradiction
is also a proof by contrapositive: “To prove A, it is the same as proving true implies A.
Then my proof by contradiction that [not A] implies false is exactly the contrapositive of
true implies A.” However, they are still morally different things, so make sure to use the
right word for the argument that you are making.

Practice

1. Prove that for all 𝑥, 𝑦 ∈ ℕ, if 𝑥𝑦 is odd, then 𝑥 is odd and 𝑦 is odd.
2. Prove that log10(2) is irrational. (You may use for free that prime factorizations

are unique, i.e. two products of prime numbers are equal if and only if they are
literally multiplying the same list of numbers, possibly in a different order.)

3. Prove that there are infinitely many prime numbers. (Hint: use the result of
Example 3.10.)

4. A set is called countably infinite if you can write an infinite list of its elements in
such a way that starting from the beginning, you will reach every element in finite
time. For example, {0, 1, 2, 3, … } is countably infinite, but if you tried to show that
ℤ is countably infinite by listing elements {0, 1, 2, 3, … , −1, −2, −3, −4,… }, this
does not work, because you will not reach −1 in finite time according to this list.
(a) (not a contradiction proof) Show that even still, ℤ is countable.
(b) Show that the closed interval [0, 1] is not countable (and hence neither is ℝ).

(Hint: consider the table below.)

1 2 3 4 5 6 7
1 0. 1 7 8 3 0 2 6 ⋯
2 0. 2 4 1 5 1 5 5 ⋯
3 0. 6 8 9 9 3 0 5 ⋯
4 0. 7 9 9 6 6 4 5 ⋯
5 0. 8 8 1 3 1 8 8 ⋯
6 0. 9 0 9 5 4 7 7 ⋯
7 0. 3 6 2 9 2 6 8 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

Extensions

These problems describe extra things to think about that might be interesting, but not
fundamental for your future learning. They may be harder.

5. (Uncomputable functions, ) A computer program is a text file of instructions
for the computer. When you run the program, it takes an input and then either
produces an output or gets stuck in an infinite loop. For simplicity, imagine that
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the input and output are always be encoded as binary strings (like 00101110101).
Let 𝐵 denote the set of binary strings. Thus, the program can be described as
computing a function 𝑓 ∶ 𝐵 → 𝐵 ∪ {⊥}, where ⊥ is a special value indicating that
the program got stuck in an infinite loop.
(a) Prove that there are a countable number of computer programs.
(b) Prove that there are an uncountable number of functions 𝑓 ∶ 𝐵 → 𝐵 ∪ {⊥},

using an argument similar to Problem 3.2.4. (Thus, most functions are not
computable!)

6. (Completeness of ℝ, ) The most important feature of ℝ that distinguishes ℝ
from ℚ is called the completeness axiom or least upper bound property.

Definition 3.12. We say that𝑚 ∈ ℝ is an upper bound on a subset 𝑆 ⊆ ℝ if for all
𝑥 ∈ 𝑆, we have 𝑥 ≤ 𝑚. We say that𝑚 is a least upper bound on 𝑆 if it is an upper
bound, and for all𝑀 ∈ ℝ, if𝑀 is also an upper bound on 𝑆, then𝑚 ≤ 𝑀. ⌟

(a) Prove that 1 is the least upper bound of (0, 1].
(b) Prove that 1 is the least upper bound of (0, 1).
(c) Prove the Archimedean property: that for all 𝑥, 𝑦 ∈ ℝ, if 𝑥 > 0, then

there exists 𝑛 ∈ ℕ such that 𝑛𝑥 > 𝑦. (Note: you cannot use things like
floor/ceiling functions for this problem, if you are familiar with them, because
the definition of these depends on the Archimedean property being true.)

The least upper bound property is the following fact (or axiom, depending on
exactly how you formalize the real numbers).

Theorem 3.13. For all 𝑆 ⊆ ℝ, if 𝑆 has an upper bound, then 𝑆 has a least upper
bound. ⌟

(d) Prove that
√
2 exists: there exists𝑥 ∈ [0,∞) such that𝑥2 = 2. (Hint: Consider

𝑆 = {𝑦 ∈ ℝ ∣ 𝑦2 ≤ 2}.)
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4 Functions

You might have seen functions informally before, in courses such as Algebra 1 in school.
There, you likely learned that a function is like amachine that takes in input and produces
output. Usually, you concerned yourself with functions that take in a real number 𝑥 ∈ ℝ
as input and produced an output 𝑓(𝑥) ∈ ℝ as output. The domain was the set of all
possible inputs that make sense for the function, and the rangewas the set of all possible
outputs. For example, you considered

𝑓(𝑥) =
√
𝑥 + 5

to be a function with domain {𝑥 ∈ ℝ ∣ 𝑥 ≥ −5} and range {𝑦 ∈ ℝ ∣ 𝑦 ≥ 0}.
This view is slightly outdated by modern standards. Here is the problem: what is

the inverse of this function? In Algebra 1, the definition says that the inverse of 𝑓 is the
function that undoes 𝑓, i.e. if 𝑓(1) = 2, then 𝑓−1(2) = 1. To find do this in general, we
swap the roles of 𝑥 and 𝑓(𝑥). In other words,

𝑥 =
√
𝑓−1(𝑥) + 5,

which can be rearranged into
𝑓−1(𝑥) = 𝑥2 − 5.

What is the domain and range of this function? By swapping the roles of 𝑥 and 𝑓(𝑥), the
domain and range should also swap. But if you blindly apply the Algebra 1 definitions,
𝑓−1 certainly has range {𝑦 ∈ ℝ ∣ 𝑦 ≥ −5}, matching the domain of 𝑓, but it has domain
all of ℝ, which is not the same as the range of 𝑓.

−5 5

−5

5

𝑓(𝑥)

𝑓−1(𝑥)?

𝑥

𝑦

The problem is illustrated in the graphs of 𝑦 = 𝑓(𝑥) and 𝑦 = 𝑓−1(𝑥) above. By
“swapping the roles of 𝑥 and 𝑓(𝑥)”, we should get a function that is reflected over the
line 𝑦 = 𝑥, showed dashed above. Thus, we should really be cutting off 𝑓−1(𝑥) to only
be defined for 𝑥 ≥ 0, even though the formula 𝑥2 − 5makes sense for all 𝑥 ∈ ℝ.

The modern definition of a function resolves this problem by requiring you to specify
the domain when defining what the function is. In other words, today, we would say
that

𝑓(𝑥) =
√
𝑥 + 5

is not a complete definition of a function. Instead, to define 𝑓, we would need to say
something like:

𝑓 ∶ [−5,∞) → ℝ, 𝑓(𝑥) =
√
𝑥 + 5.
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The set {𝑥 ∈ ℝ ∣ 𝑥 ≥ −5} is the domain by definition, and ℝ is the codomain, the
ambient space where 𝑓 maps into, which may be bigger than the range.

Definition 4.1. A function contains 3 pieces of information: a domain 𝑋, a codomain
𝑌, and a rule mapping every element of 𝑋 to some element of 𝑌.

(More formally, a function is a tuple (𝑋, 𝑌, 𝐹)where𝑋 and𝑌 are sets, and 𝐹 ⊆ 𝑋×𝑌
is a set of pairs in which for all 𝑥 ∈ 𝑋, there is exactly one (𝑎, 𝑏) ∈ 𝐹 with 𝑎 = 𝑥. We
write 𝑓(𝑥) = 𝑦 as shorthand for (𝑥, 𝑦) ∈ 𝐹.) ⌟

Definition 4.2. A function 𝑓 ∶ 𝑋 → 𝑌 is called

surjective
bijective
injective

⎫

⎬
⎭

if for all 𝑦 ∈ 𝑌, there exists
⎧

⎨
⎩

at least one
exactly one
at most one

⎫

⎬
⎭

𝑥 ∈ 𝑋 such that 𝑦 = 𝑓(𝑥).

⌟

Example 4.3. Consider the following examples, all with signature 𝑓 ∶ ℝ → ℝ.

𝑓(𝑥) = 𝑥3 − 𝑥
surjective, not injective

𝑓(𝑥) = 𝑥
bijective

𝑓(𝑥) = 2𝑥
injective, not surjective

The function 𝑓(𝑥) = 𝑥3 − 𝑥 is surjective, because every point along the 𝑦-axis is
reached by some input 𝑥. It is not injective because in themiddle, there are some 𝑦-values
that are reached by three different values of 𝑥.

The function 𝑓(𝑥) = 𝑥 is both surjective and injective, and thus bijective, because
clearly there is exactly one 𝑥 that produces each 𝑦.

The function 𝑓(𝑥) = 2𝑥 is injective, because every 𝑦-value is certainly achieved by
no more than one 𝑥. However, it is not surjective, at least when defined with signature
𝑓 ∶ ℝ → ℝ, because not every point in the codomain is reached. In particular, (−∞, 0]
is not reached. ⌟

Definition 4.4. The inverse of a bijective function 𝑓 ∶ 𝑋 → 𝑌 is denoted 𝑓−1 ∶ 𝑌 → 𝑋,
and we define 𝑓−1(𝑦) to be the unique 𝑥 such that 𝑓(𝑥) = 𝑦. ⌟

Example 4.5. The inverse of 𝑓 ∶ ℝ → ℝ, 𝑓(𝑥) = 𝑥 + 1 is the function 𝑓−1 ∶ ℝ → ℝ,
𝑓(𝑥) = 𝑥 − 1. In other words, +1 and −1 are inverses because they undo each other. ⌟

~~~

Definition 4.6. Given 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍, their composition is the function
𝑔◦𝑓 ∶ 𝑋 → 𝑍, given by (𝑔◦𝑓)(𝑥) = 𝑔(𝑓(𝑥)). People often also write 𝑓𝑛 for the function
𝑓◦𝑓◦⋯◦𝑓 (𝑛 times).1 ⌟

1Except for trigonometric functions and log, for which the standard meaning of sin2(𝑥) is (sin(𝑥))2, not
sin(sin(𝑥)), etc. This is just a mathematical notation quirk to remember.
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𝑋 𝑌

𝑍

𝑓

𝑔◦𝑓
𝑔

! Note that 𝑔◦𝑓 means “do 𝑓 first, then 𝑔,” i.e. operate in a right-to-left order. This is
just a standard mathematical convention. People in other fields who prefer to think
left-to-right may write things like 𝑓; 𝑔, but this is uncommon for mathematicians.

Example 4.7. Suppose 𝑓, 𝑔 ∶ ℝ → ℝ and 𝑓(𝑥) = 2𝑥 with 𝑔(𝑥) = 𝑥 + 1. Then,

• (𝑔◦𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(2𝑥) = 2𝑥 + 1.
• (𝑓◦𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓(𝑥 + 1) = 2(𝑥 + 1) = 2𝑥 + 2.

Thus, note that it is very important: usually 𝑔◦𝑓 ≠ 𝑓◦𝑔! ⌟

~~~

Functions can be defined recursively. For example, we encountered the Fibonacci
sequence earlier. We said to define 𝐹1 = 1, 𝐹2 = 1, and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 3.
This is secretly a function! All infinite sequences are formally functions with domain ℕ.
In this case, we have:

𝐹 ∶ (ℕ ⧵ {0}) → ℕ
⎧

⎨
⎩

𝐹(1) = 1
𝐹(2) = 1
𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2)

.

Functions can also take multiple inputs. Formally, a function that is taking multiple
inputs is not actually taking multiple inputs, it is just taking one input that is a tuple.
For example, you might want to write a function that adds two real numbers, and you
have seen people write things like 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦. Formally, this is the function

𝑓 ∶ ℝ × ℝ → ℝ 𝑓((𝑥, 𝑦)) = 𝑥 + 𝑦.

In other words, 𝑓 takes an ordered pair (𝑥, 𝑦) as input, then adds the two things in the
pair to produce one number. However, in standard notation, we do drop the double
parentheses and just write

𝑓 ∶ ℝ2 → ℝ 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦.

Not all functions look the same. For most functions that we define in math, we use
prefix notation. That’s what we’ve been doing this whole section, writing 𝑓(𝑥, 𝑦) for
applying 𝑓 to the inputs 𝑥 and 𝑦. For some special functions on two inputs, we like to use
infix notation. In other words, common operations like + and ⋅ are actually functions!
For example, the standard definition of ⋅ forℕ looks like the following recursive definition

⋅ ∶ ℕ2 → ℕ {
0 ⋅ 𝑏 = 0
𝑎 ⋅ 𝑏 = (𝑎 − 1) ⋅ 𝑏 + 𝑏 if 𝑎 ≥ 1

.
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For some functions, we also like to use postfix notation. The most common example
is factorial, which is defined recursively by

! ∶ ℕ → ℕ {
0! = 1
𝑛! = 𝑛((𝑛 − 1)!) if 𝑛 ≥ 1

.

Some older calculators may also use postfix notation for operations like square root. On
those calculators, to compute

√
7, you would press first “7”, then the “

√
” button.

Practice

1. For all of the following situations, pick an appropriate domain and codomain to
describe the situation as a function. Is your function surjective, bijective, injective,
or none? If bijective, describe the inverse function.
(a) A database for a chat program that maps usernames to display names.
(b) A computer program that converts natural numbers from base 10 to base 2.
(c) Multiplying two numbers, then dividing by their sum.
(d) Finding all multiples of 3 between two given integers, inclusive.

2. The range or image of a function 𝑓 ∶ 𝑋 → 𝑌 is the set

im(𝑓) = {𝑦 ∈ 𝑌 ∣ there exists 𝑥 ∈ 𝑋 s.t. 𝑓(𝑥) = 𝑦}.

In other words, it is the set of all values actually attained by the codomain, which is
the concept of range that you are familiar with, which could potentially be smaller
than the codomain.

Prove that every function is surjective onto its range. In other words, given a
function 𝑓 ∶ 𝑋 → 𝑌, prove that the function

𝑓 ∶ 𝑋 → im(𝑓) 𝑓(𝑥) = 𝑓(𝑥)

is well-defined (the output as defined by the formula belongs to the codomain)
and surjective. Conclude that every injective function is bijective onto its range.

3. You will sometimes encounter an alternative definition of injective: Prove that a
function 𝑓 ∶ 𝑋 → 𝑌 is injective (by our definition) if and only if for all 𝑥1, 𝑥2 ∈ 𝑋,
if 𝑓(𝑥1) = 𝑓(𝑥2), then 𝑥1 = 𝑥2.

4. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be functions.
(a) Suppose 𝑓 and 𝑔 are both bijective. Explain why 𝑔◦𝑓 is bijective.
(b) Following the previous part, 𝑓, 𝑔, and 𝑔◦𝑓 are all bijective and thus have

inverses. Express (𝑔◦𝑓)−1 in terms of 𝑓−1 and 𝑔−1. Prove your expression.
5. Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be functions. Prove or disprove the following.

(a) If 𝑔◦𝑓 is injective, then 𝑓 is injective.
(b) If 𝑔◦𝑓 is injective, then 𝑔 is injective.
(c) If 𝑔◦𝑓 is surjective, then 𝑓 is surjective.
(d) If 𝑔◦𝑓 is surjective, then 𝑔 is surjective.

6. Find 3 distinct functions 𝑓 ∶ ℝ → ℝ such that 𝑓2 = idℝ. (id is the common name
of the identity function, idℝ ∶ ℝ → ℝ, idℝ(𝑥) = 𝑥.)

33



Extensions

These problems describe extra things to think about that might be interesting, but not
fundamental for your future learning. They may be harder.

7. (Axiom of choice, ) If you’ve heard of the axiom of choice before, you might
heard that it’s a crazy tool that allows you to make subsets of ℝ for which there is
no valid notion of length, or break one sphere into 5 pieces and reassemble them
into two spheres identical to the original. Mathcamp is teaching several courses
about it this summer!

But the axiom says something very simple and believable. Let𝒜 be a set of sets.
The axiom just says that there is a way to pick one element from each of these sets.
More formally, there exists a function 𝑓 ∶ 𝒜 → ⋃

𝐴∈𝒜𝐴 such that 𝑓(𝐴) ∈ 𝐴 for
all 𝐴 ∈ 𝒜. This axiom is also important for some very basic, seemingly obvious
theorems, described below.

(a) Prove (without anything fancy) that if a function 𝑓 ∶ 𝑋 → 𝑌 is injective,
it has a left inverse. A left inverse is a function 𝑓−1 ∶ 𝑌 → 𝑋 such that
𝑓−1(𝑓(𝑥)) = 𝑥 for all 𝑥 ∈ 𝑋. (In other words, it undoes 𝑓 after you’ve already
done 𝑓.)

(b) Prove using the axiom of choice that if a function 𝑓 ∶ 𝑋 → 𝑌 is surjective,
it has a right inverse. A right inverse is a function 𝑓−1 ∶ 𝑌 → 𝑋 such that
𝑓(𝑓−1(𝑦)) = 𝑦 for all 𝑦 ∈ 𝑌. (In other words, it preemptively undoes 𝑓,
setting up a state where if you then do 𝑓,

(c) Prove that if every surjective function has a right inverse, then the axiom of
choice is true. (Thus, these two claims are completely equivalent.)
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