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1 Domino tilings

A tile is a simply connected region t ⊂ Z2. Tiling problems ask variations
of the following question: Given a finite region Γ ⊂ Z2 and a set of tiles T ,
is there a way to arrange translations of tiles from T , so that no two copies
overlap and their union is exactly Γ? For example, after fixing a set of tiles
T , can we come up with an efficient algorithm to determine if Γ is tileable
by T? If the question is too hard, we can make it easier by imposing some
restrictions on Γ, such as being simply connected or being a rectangle. On
the other hand, we can also ask harder questions, like counting the number
of distinct tilings of Γ by T .

In Part I, we will see many different methods to answer these questions
positively. (Negative results will appear in Part II.) Let us begin by con-
sidering one of the simplest cases. Set T = { , }. When is a region
Γ ⊂ Z2 tileable by T? (When drawing tiles, each square represents one
integer point.) This is the problem of domino tilings.

Introductory discrete math courses often cover the following exercise:
given an 8 × 8 chessboard with two opposite corners removed, prove that
the remaining board cannot be covered by dominoes. The solution is to
color the chessboard in alternating black and white squares. Then opposite
corners are of the same color, whereas each domino covers both a black and
a white square, so a tiling is not possible. This coloring criterion is clearly
necessary in general, but it is not sufficient. The following shape has no
domino tiling, yet has an equal number of black and white squares.

A simple general algorithm to determine if Γ can be tiled by { , }
involves a reduction to the perfect matching problem. Recall that the
perfect matching problem asks: Given a graph G = (V,E), is there a
subset of edges M ⊂ E such that every vertex appears in exactly one edge
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of M? The fastest known deterministic algorithm for perfect matching is
due to Micali and Vazirani [MV80], and runs in O(

√
|V | · |E|) time.

Proposition 1.1. There is a polynomial time algorithm to decide tileabil-
ity of Γ by { , }. ⌟

Proof. Convert the region into a graph by taking V = Γ and creating an
edge between every two points with distance 1 from each other. Then a
perfect matching in the graph is exactly a domino tiling (every edge in the
matching is a domino).

Running the Micali–Vazirani algorithm, we get a runtime of O(n1.5),
where n = |Γ|. One might naturally wonder if this is best possible. For
simply connected regions Γ, Thurston gave an algorithm to show that we
can do better.

Theorem 1.2 ([Thu90]). There is an O(n log n) time algorithm to decide
tileability of simply connected Γ by { , }. ⌟

Proof. Recalling that squares in our drawing denote integer points, denote
Γ∗ = Γ+(±0.5,±0.5), the set of corners of the squares. Fix an origin in Γ∗.
Given a tiling τ , define a function hτ : Γ∗ → Z, called the height function
as follows: hτ is 0 at the origin, and travelling counterclockwise along tiling
lines, add 1 around black squares and subtract 1 around white squares.
Here are two examples. (The origin is the dot, and the hτ is written to the
top-left of each point.)

0 01
-1 -1-2

0

0 1 0
-1 -2 -1

1
2
101

-1 32

Lemma 1.3. The function hτ is well-defined. That is, computing hτ using
any path around the dominoes produces the same values. ⌟

Proof. First note that the region must be simply connected. For instance, if
one tries to compute hτ on the following tiling of an annulus-shaped region,
one finds by tracing the outer perimeter that hτ can be any multiple of 4
at the origin.



6 1. Domino tilings

We prove by induction on the number of tiles. The base case of a single
domino is clear by the calculation in the first example. For the inductive
step, find a domino t whose removal keeps the region simply connected,
then remove it and compute hτ on the smaller region. (Take the existence
of such a domino for granted, we’ll come back to it in the next section.)

By our choice of domino, t may only touch Γ \ t on a continuous path
γ (i.e. not two segments). The computation of hτ on points in γ is consis-
tent with placing t back because clockwise around a black square (+1) is
counterclockwise around the white square on the other side (−(−1)). The
computation of hτ on the remaining points of t is consistent with the two
endpoints of γ because any two paths around a single domino produce the
same values, by the base case.

One important fact to notice that is that by traversing the boundary ∂Γ,
we find that hτ has the same value on ∂Γ for all τ . In fact, these values on
the boundary can be found even if no tiling of Γ exists. When we only care
about the boundary, we will hence write h instead of hτ .

Lemma 1.4. Assuming Γ has a tiling, there exists a height function hmin

such that for all tilings τ , hmin ≤ hτ pointwise. ⌟

Proof. Observe that by applying the following local transformation, called
a flip, the value of hτ at the center vertex decreases by 4.

0 01

00
-1 -12
1

0 01

00
-1 -1-2
1

Starting with any height function, apply such flips until no longer possi-
ble, implying a local minimum h∗. We will show that h∗ = hmin. It suffices
to show that h∗ can be computed using only the values of h on ∂Γ, because
it implies that h∗ is independent of the tiling one starts with, and hence
has values strictly less than all other tilings.

Observe that h∗ attains its maximum on ∂Γ. This is because all height
functions increase in some direction at domino corners, and interior vertices
that are not corners have the above flip applied, after which they are less
than their neighbors. Therefore, we can compute h∗ on the interior as
follows: find a vertex where h∗ is maximum. The vertex must be on the side
of a domino, because corners are not maximums. This identifies a domino
piece that must exist in the tiling of h∗, which allows the computation of
h∗ around that piece. Because it was a boundary piece, removing it leaves
one or two simply connected regions, allowing the process to repeat.

To conclude the proof, recall that the height function along ∂Γ can
be computed without knowing any tiling, even if there does not exist a
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tiling. Then, attempt to construct hmin using the tile-removing procedure
described in the above lemma. If a tiling exists, then hmin will be found
successfully. If no tiling exists, then because the above procedure finds a
tiling by the end, an error can be detected.

Where n = |Γ|, this algorithm computes hmin on O(n) points. Note
that hmin may actually have values that are quite large (up to n) and
hence this requires O(n log n) time. One also needs to find vertices where
hmin attains maximum value about O(n) times, but this can be done once
and dynamically updated using a heap data structure, which again allows
everything to be done in O(n log n) total time.

The proof of the above theorem gives the following corollary.

Corollary 1.5. Any two domino tilings of a simply connected region are
connected by flips. ⌟

This is just because all domino tilings are connected to hmin by flips,
and this is a transitive relation. Again, note that it is very important to be
simply connected here, as the following example shows.

Flip connectivity is an important topic that we will revisit many times.
For dominoes, there are many results that explore this even further. Let Γ
be a square of side length 2k and H its graph of flip connectivity, whose
vertices are domino tilings and two tilings are connected by an edge if and
only if they differ by a flip. Then the diameter of H is O(k3). To sketch the
argument, we can explicitly compute hmin and hmax for squares. For each,
the gap between the boundary and the center is O(k). A flip decreases the
center value by 4 (a constant), and every tiling has 2k2 dominoes, so we
should expect to need O(k3) flips to go from hmax to hmin. A full proof can
be found in [PZ17].

With Thurston’s near-linear time algorithm, one might think that there
are not many more improvements to be made. However, note that a simply
connected region may be specified by listing only its boundary, which may
be up to quadratically smaller. Thurston’s algorithm is only linear in the
area, and may be quadratic in the boundary length. Tassy began working
in this direction by noticing the following phenomenon.

Theorem 1.6 ([Tas14]). Let α(x, y) = 2|x− y|∞ + δ(x, y), where δ(x, y) is
a small correction factor (|δ(x, y)| ≤ 1) whose formula is a bit complicated
and irrelevant for us. (See [PST16] for a precise characterization.) Then
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a simply connected region Γ is tileable by dominoes if and only if for all
x, y ∈ ∂Γ, we have h(x)− h(y) ≤ α(x, y). ⌟

As an example, consider our original example of a region not tileable by
dominoes. The height function around the boundary is computed below.

0

0
2 2
-4-3

-1
1
3
1 0
-1
0
-1-2

-3
-1 -2

Across the red line, h(x) − h(y) = 7, whereas 2|x − y|∞ = 2, so there
is no way we can have h(x) − h(y) ≤ α(x, y). Hence Γ is not tileable by
dominoes.

Note that this theorem does not immediately imply an improvement on
Thurston’s algorithm. By checking every pair of points on the perimeter,
this theorem implies an algorithm to determine domino tileability in O∗(p2)
time, where p = |∂Γ| is the perimeter and ∗ hides logarithmic factors.
However, further work in [PST16] (the T is Tassy) reduced this to O∗(p)
time by finding redundancies in checking every pair of boundary vertices:
at a high-level, it suffices to add a few points on the interior in a Steiner
tree-like way to speed things up.

The theorem is a bit tedious and not very enlightening to prove. How-
ever the intuition for the theorem follows from a classical result in geometry,
known as Kirszbraun’s theorem.

Theorem 1.7 ([Kir34]). Let A = {a1, . . . , an} and B = {b1, . . . , bn} be
points in Rd such that |ai − aj | ≥ |bi − bj | for all i, j. Then there exists a
piecewise linear isometry φ : Rd → Rd such that φ(ai) = bi for all i. ⌟

A piecewise linear isometry is a continuous function that is an isometry
on each piece of a partition on Rd into a locally finite triangulation. A
generic example is the act of crumpling a piece of paper and flattening it
back down. The creases form a triangulation and lengths are preserved
in each piece, while the entire motion is continuous. Note that piecewise
linear isometries are always 1-Lipschitz functions.

Before proving the theorem, let us first connect this back to Tassy’s
tiling criterion. Think about A as the points on the perimeter, so that
the distances |ai − aj | are similar to α(x, y) (basically L∞ distance). Then
if |bi − bj | corresponds to h(x) − h(y), the existence of a piecewise linear
isometry on the whole space that correctly maps these points is almost like
the existence of a height function that extends to the interior, which exists
if and only if Γ is tileable by dominoes.
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Proof of Theorem 1.7. We follow a more recent constructive proof of the
theorem by [AT08]. We also focus on the case of d = 2 for simplicity. We
induct on n, and the base case of a single point is trivial.

For the inductive step, first note that by a translation, we can assume
an = bn without loss of generality. Let ψ satisfy ψ(ai) = bi for all 1 ≤ i ≤
n− 1. Let Ω = {x ∈ R2 | |an − x| < |an − ψ(x)|}, the region of points that
ψ moves away from an.

We make a few observations about Ω. First, if an ̸∈ Ω, that means
ψ(an) = an = bn and we are done. So we can safely assume an ∈ Ω.
Additionally, ai ̸∈ Ω for 1 ≤ i ≤ n − 1 because such points move towards,
not away from an by the hypotheses of the theorem. Lastly, Ω is an open
set with piecewise linear boundary, since ψ is an isometry on each part of
a locally finite triangulation.

Lemma 1.8. Ω is a star-shaped domain with center an. ⌟

Proof. Let y be on the line segment [an, x] for any x ∈ Ω. We are to show
y ∈ Ω, meaning |an − y| ≤ |an − ψ(y)|. We have

|an − y| = |an − x| − |x− y| (def. of y)

< |an − ψ(x)| − |x− y| (x ∈ Ω)

≤ |an − ψ(x)| − |ψ(x)− ψ(y)| (ψ is 1-Lipschitz)

≤ |an − ψ(y)|. (triangle ineq.)

The lemma is proved.

Lemma 1.9. For every triangle T in the locally finite triangulation on which
ψ is defined, denote ψT = ψ|T the isometry of ψ restricted to T . Then
T ∩ ∂Ω ⊂ {x ∈ R2 | |x− an| = |x− ψ−1

T (an)|}. ⌟

Proof. First note that because isometries are bijections, the point ψ−1
T (an)

is certainly well-defined (though it may lie outside T ). Next, for any x ∈
T ∩ ∂Ω,

|x− an| = |ψ(x)− an| (x ∈ ∂Ω)

= |ψT (x)− an| (x ∈ T )

= |ψT (x)− ψT (ψ
−1
T (x))|

= |x− ψ−1
T (x)|. (ψT is isometry)

The lemma is proved.

To construct the desired function φ, first we let φ(x) = ψ(x) for all
x ̸∈ Ω. This correctly maps a1, . . . , an−1 by the observation above. To
define φ on Ω, we traverse ∂Ω and find every T that intersects it. By the
above lemma, T ∩ ∂Ω is a line segment, so let rT denote the reflection
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across it. Because Ω is star-shaped, we also have a partition of Ω into
triangles T ′ with bases T ∩ ∂Ω and vertex an. On every such T ′, we define
φ(x) = ψT (rT (x)). The reflection maps an to ψ−1

T (an) by the above lemma,
so φ(an) = an as desired.

an

ψT
-1(an)

T T'

∂Ω

It remains to check that φ is continuous. On ∂Ω, the reflection rT is
an identity map so we are left with ψ, which agrees with φ outside Ω.
Inside Ω, the potentially conflicting points are line segments [an, x] where
x is an endpoint of some segment T ∩ ∂Ω. But regardless of T , because
x ∈ ∂Ω, again φ maps x to ψ(x), so the entire segment [an, x] is mapped
to [an, ψ(x)]. So φ is continuous.

A detail missed here is the case where Ω is not bounded, so the triangles
T ′ constructed above do not actually cover the entire set Ω. The interested
reader may consult the original paper [AT08] to fill in this detail.



2 Conway’s tiling groups

With dominoes sufficiently discussed, it is time to consider other sets of
tiles T . In this section, we will discuss technique that generalizes parts of
Thurston’s algorithm, called Conway’s tiling groups.

Before introducing the main event, consider another example. Call the
following graph ∆n, with n vertices on each side. (Below pictured is ∆6.)

We ask the question: for what n does there exist a vertex cover of ∆n

by triangles ∆2 = K3? That is, can we choose some triangles (copies of ∆2)
in ∆n such that every vertex in ∆n is contained in exactly one triangle?
For instance, ∆3 has no vertex cover by ∆2. The three vertices of degree 2
each force a ∆2 in the cover, leading to overlap.

Of course, we are studying tilings of regions in Z2, so let us translate the
problem first. Tiling ∆n with triangles is equivalent to tiling the following
region, call it Γn, with T = { , }. (Just tilt your head 45 degrees.)

It should be quickly observed that because Γn has 1
2n(n + 1) squares

and and have 3 each, we must have 3 | n(n+1), and hence n ≡ 0, 2
(mod 3). However, this is not sufficient, since as mentioned before, Γ3 has
no tiling by and . Conway and Lagarias prove the following.

11



12 2. Conway’s tiling groups

Theorem 2.1 ([CL90]). The region Γn is tileable by T = { , } if and
only if n ≡ 0, 2, 9, 11 (mod 12). ⌟

Proof. First, note the following lemma:

Lemma 2.2. The region Γn can be tiled by { , , , } if and only if
n ≡ 0, 2 (mod 3). ⌟

Proof. The =⇒ direction is the same trivial divisiblity argument above.
The ⇐= direction is by induction. Γ2 = is trivially tiled. Γ3 can be
tiled by stacking and . For the inductive step, given a tiling for Γn,
one can tile Γn+3 as in the following picture.

Γn

Our approach is to define a sort of height function, similar to the proof
of domino tilings. Like before, the height function will depend on the tiling
τ using tronimoes in T , which exist for all n that we care about by the above
lemma, and will assign something to every vertex in Γn. First, consider the
following infinite graph, denoted R.

For a precise characterization, alluding to our forthcoming discussion
of Conway’s tiling groups, R is the Cayley graph of the group ⟨a, b | a3 =
b3 = (ab)3 = 1⟩. (That is, the free group generated by a and b under the
relations a3 = b3 = (ab)3 = 1.) For our purposes now, just note that at
every vertex has one each of red in-edge, red out-edge, blue in-edge, and
blue out-edge.

Fix a tiling τ of Γn by { , , , }, and fix an origin in both Γ∗
n

and R. The height function hτ : Γ∗
n → R is defined by walking along

tiling lines, then having right steps correspond to following red out-edges
(a steps), up steps correspond to following blue out-edges (b steps), and
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left/down steps correspond to following in-edges (a−1 or b−1 steps). For
example, here is how hτ would map the 4 tronimoes , , , and .
(The sequences of a and b are written by walking counterclockwise, but it
doesn’t matter for the path in R.)

ababa-2b-2 a2b2a-1b-1a-1b-1 a3ba-3b-1 ab3a-1b-3

Lemma 2.3. The height function hτ is well-defined. That is, any two paths
between the same points, following tiles, end at the same vertex in R. ⌟

Proof. A similar induction argument to the corresponding lemma in the
dominoes case. In particular, the above four drawings show that the height
function is well-defined around single tiles, since each path in R loops back
to its original vertex. In the inductive step, we would once again add tiles
one by one, noting that we can continue to define hτ nicely.

As before, we observe that hτ restricted to the boundary of Γn is the same
function for all τ . We denote the image by h(∂Γn). The key lemma of our
main argument is the following:

Lemma 2.4. For all tilings τ of Γn by T , the number of pieces minus
the number of pieces is constant. (Denote this quantity by ρ(Γn)). ⌟

Proof. Place a point zi inside each hexagon in R. Denote wind(γ, z) to
be the winding number of a curve γ around a point z (the number of full
counterclockwise rotations γ makes around z). We will show that

ρ(Γn) =
∑
i

wind(h(∂Γn), zi),

which is a quantity that does not depend on the tiling.
Note from the previous figure that pieces loop clockwise around one

hexagon (winding number −1), pieces loop counterclockwise around one
hexagon (winding number 1), and and pieces do not loop around
any hexagons (winding number 0). Hence any tiling τ ,

ρ(Γn) =
∑
i

∑
t∈τ

wind(hτ (∂t), zi).
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Now, we just need to observe that ∂Γn is exactly the boundaries of the
pieces ∂t for t ∈ τ joined together, and winding number is additive when
joining two cycles, so the result is exactly as claimed.

To finish the proof, we first find example tilings of Γ2, Γ9, Γ11, and Γ12

by brute force or computer search. A simple induction argument gives the
periodicity with a picture nearly identical to Lemma 2.2.

To show that the remaining n are not possible, do the following simple
calculation for each n. The area of Γn is 1

2n(n+1). Using a tiling of Γn by
T , find ρ(Γn). Then if Γn has a tiling by p tiles and q tiles, we have
p + q = 1

6n(n + 1) and p − q = ρ(Γn). A computation will find that there
will not be integer solutions for p and q. For instance, for n = 15, the area
is 120 (meaning p + q = 40) and p − q = ρ(Γn) = −5, for which there are
no integer solutions.

There were many similarities between this proof and Thurston’s algo-
rithm, differing really only at the end. We also note that all the lemmas
hold for simply connected Γ in general, and we only use the shape of Γ at
the end. The general idea here is known as Conway’s tiling group.

Definition 2.5. Let T = {t1, . . . , tn} be a set of tiles. Denote ⟨a, b⟩ the
free group on two generators. Fixing an arbitrary origin for each ti on its
boundary, let wi ∈ ⟨a, b⟩ be the word obtained by tracing the boundary of
ti counterclockwise, with a representing moving right and b representing
moving up.

Notice that the normal closure NT of the tile words, which by definition
is the group generated by {α−1wiα | α ∈ ⟨a, b⟩, 1 ≤ i ≤ n}, is agnostic to
the choice of origin, because any two origin choices differ by an appropriate
α. The tiling group of T is then defined as the quotient GT = ⟨a, b⟩/NT . ⌟

With the above triangular tronimo tilings, our notation was already
quite suggestive. We already calculated w1 = ababa−2a−2, etc. in an ex-
ample. However, GT has some very complicated structure. To simplify
the problem, we noticed that in order for α−1w1α = 1, etc., it suffices for
a3 = b3 = (ab)3 = 1. So we used the natural map φ : GT → ⟨a, b | a3 =
b3 = (ab)3 = 1⟩ defined by φ(a) = a and φ(b) = b to simplify the problem,
recalling that R is exactly the Cayley graph of ⟨a, b | a3 = b3 = (ab)3 = 1⟩.

For domino tilings, a horizontal domino has word w1 = a2ba−2b−1 and
a vertical domino has word w2 = ab2a−1b−2. Again, we simplified the
problem by considering a map φ : GT → ⟨a, b | a2 = b2 = 1⟩ ∼= D∞, the
infinite dihedral group, whose Cayley graph is an infinite line.

After fixing origins of both Γ and the Cayley graph R of the groups we
were interested in, we defined height functions hτ : Γ → R. (Fixing the
origin of D∞ turned it into Z.) Height functions were defined by travel-
ling along tiling lines, with a representing moving right and b representing
moving up. For triangular tronimo tilings, this is exactly what we did.
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For domino tilings, we originally defined hτ to increase counterclockwise
around black tiles and decrease around white tiles. But because black and
white tiles alternate, this exactly captures the relation a2 = b2 = 1, so the
two definitions are really equivalent.

In each case, we then had to show that hτ is well-defined. We relied on
the ability to remove tiles while leaving the region simply connected. We
now give a reference: the following general version was sketched in [CL90]
and proven in full in [MP99].

Lemma 2.6. Given a tiling τ of a finite simply connected region Γ, there
exists a tile t such that Γ \ t is simply connected. ⌟

The proofs diverged from this point, as we used the height function
in different ways. With dominoes, we found a way to construct a tiling
(in fact, the minimum height tiling) by building pieces from the boundary.
With triangular tronimoes, we used the height function to differentiate
and from and , which gave a constraint on the number of
and tiles in a tiling.

Now, let’s see how Kenyon and Kenyon applied these ideas to a new
problem. The two actually proved a little more than what we state here:
they showed the result for 1 × k and ℓ × 1 rectangles, but we’ll focus on
k = 3 for simplicity.

Theorem 2.7 ([KK92]). If Γ ⊂ Z2 is simply connected, then there is a
O(n log n) algorithm to determine if it is tileable by T = { , }. ⌟

Proof sketch. As previously computed, the tile words are w1 = a3ba−3b−1

and w2 = ab3a−1b−3. Hence, the map ϕ : GT → ⟨a, b | a3 = b3 = 1⟩
is a homomorphism and simplifies the problem. Its Cayley graph can be
visualized in the following picture, similar to R in the previous section but
without hexagons, expanding outwards in a tree-like structure.

We now get height functions hτ : Γ → R, where R is the Cayley graph
above. They are well-defined because the previous lemma gives us tiles that
can be safely removed, and placing them back, it is easy to see that they
locally keep heights well-defined.

The innovation in this proof is to consider a function dτ : Γ → N,
where dτ (x) is the distance in the graph R from the origin to hτ (x). (The
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original paper and the lecture called this the height function.) This distance
function serves the same purpose as the height function in the domino case.

Choose the origin (below as the filled black circle) to be outside the
entire region hτ (Γ). Then, like in the domino case, flips can decrease the
distance. (On each vertex in the tiling, the distance between its correspond-
ing vertex in the Cayley graph to the origin is written. The empty circle
shows where one vertex is mapped, the rest follow.)

5 76

3 4
6
5
4354

4
6 87
5

5 16

3 4
6
5
4354

4
6 27
5

The origin matters because whether the horizontal or vertical orienta-
tion has smaller distance depends on the relative positions of the region and
origin. More specifically, call the lower left corner of the square x. Then
the vertical tiling has smaller distances if and only if the red triangle adja-
cent to hτ (x) is closer to the origin than the blue triangle. One is always
closer than the other because hτ (x) is not the origin, and R has a tree-like
structure, so there is a unique acyclic path to follow.

In any case, the rest of the proof proceeds identically to the domino case.
This idea of flips gives produces a tiling for which the maximum distance
is found on the boundary. The point with maximum distance produces a
unique compatible tronimo, and this can be iterated to produce a tiling, if
one exists.

Corollary 2.8. All tilings of simply connected regions by bars are flip-
connected, by the kind of flip drawn above. ⌟

Rémila later generalized this argument to T consisting of any two rect-
angles of side length at least 3, also using tiling groups, in [Rém05].

One final thing to note is that tiling group arguments work best when
the set of tiles is small. If there are too many tiles, the quotient GT =
⟨a, b⟩/NT may become too small or too complicated to be interesting. How-
ever, there are exceptions. In [Kor04, Chapter 7], Korn used tiling group
arguments to give algorithms and flip-connectivity results for tiling simply
connected regions by the set of 2k × 2k−i blocks over all i. The arguments
work because although k may be large, the tiles are all quite simple.



3 Coloring arguments

Recall that in the original domino problem, we colored the grid black and
white, and started with the simple observation that for a region to be
tileable, the number of black and white tiles must be the same. Compared
to Conway’s tiling group, this is an extremely simple idea, but it is still
worth looking into a little deeper.

Definition 3.1. Let T = {t1, . . . , tk} be a set of tiles and let G be an
abelian group written additively, the set of colors. A coloring function for
T is a function f : Z2 → G such that for all translations t of any ti,∑

x∈t

f(x) = 0.

The coloring group OT is the set of coloring functions (under addition).
It is the quotient of the free group on generators indexed by Z2 by the
relations given by the above equations. ⌟

As an example, let T = { , } and G = Z. In the below picture
(left), we translated two tiles (red and blue) to overlap. Because f must
have the same sum on both tiles, we get that the top square and right square
must be the same color, in particular, −c. By repeating this argument for
neighboring squares, we get the checkerboard pattern that we expected.
The coloring group OT is isomorphic to Z because there is one coloring for
every choice of c.

As a second example (right), consider T = { , , , }. In this
case, we overlap and to get that all diagonals must be constant, then
observe that by overlapping with itself, there are three colors, the third
of which is fixed by the first two. The coloring group is hence isomorphic
to Z2 because there are two free colors.

c -c
-c c1

c1

c1
c1

c1

c2 c3
c3
c3c3

c3

c2
c1

c3

c3

c2
c2
c2

c2

c2
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Colorings are useful as a quick first method to prove that a tiling does
not exist. However, their power is limited. Our goal is to briefly explore
just how limited their power is.

Definition 3.2. Denote χX the characteristic function of X. A signed
tiling of Γ by T is a set of translated tiles τ and coefficients at ∈ {±1} such
that χΓ =

∑
t∈τ atχt. ⌟

As an example, recall that Γ3, the triangular region with side length 3,
cannot be tiled with and . However, a signed tiling exists.

Proposition 3.3. If a region Γ ⊂ Z2 (possibly not simply connected) has
a signed tiling by T and f ∈ OT , then

∑
x∈Γ f(x) = 0. ⌟

Proof. Split the sum over a signed tiling of Γ. The sum over each tile is
just 0 by definition of f .

Before, we noted that Γ must have equal numbers of black and white
tiles to be tileable by dominoes. But in fact, the above proposition says that
this condition must hold for the region to even have just a signed tiling. In
other words, coloring arguments are so weak that they cannot differentiate
signed and unsigned tilings.

As another example of signed tilings, we have the following result, to
be contrasted with the analogous result for unsigned tilings (Theorem 2.1),
where there were only tilings when n ≡ 0, 2, 9, 11 (mod 12).

Theorem 3.4 ([CL90]). The region Γn has a signed tiling with and
if and only if n ≡ 0, 2 (mod 3). ⌟

Proof. One direction trivial as we noted before: the total number of squares
must be divisible by 3, so a tileable Γn has n ≡ 0, 2 (mod 3). For the other
direction, we induct from n to n+12 by the same argument as the original
proof. Hence, the only thing left to show are the base cases. The cases of
0 and 2 are trivial, 3 was shown just above, and 5 is shown below.

The cases of 6, 8, 9, and 11 are similar and left to the reader to verify.
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We note that more specifically, the proof of the Conway–Lagarias result
(Theorem 2.1) fails with coloring arguments because such arguments cannot
prove that the number of tiles minus the number of is constant.
Indeed, for the Γ3 region, this difference is 4 with signed tilings, but 1 for
unsigned tilings.



4 Tiling by T-tetraminoes

Let’s consider another basic tiling problem: When can an a × b rectangle
Γ be tiled by T = { , , , }? An obvious first necessary condition
is that 4 | ab, and by noting that after applying a checkerboard coloring,
each tile covers an imbalance of colors, we can quickly get that 8 | ab. The
full story is not that much more complicated and was resolved by Walkup.

Theorem 4.1 ([Wal65]). An a×b rectangle is tileable by { , , , }
if and only if 4 | a and 4 | b. ⌟

Proof. The proof is actually quite elementary, not using any of the tech-
niques we have seen so far. It relies on the following structural observation.

Lemma 4.2. Any tiling of a rectangle by T-tetraminoes conforms to the
following diagram. Red lines cannot be in the interior of any tile and blue
squares cannot be the corner of any tile.

⌟

Proof sketch. By induction, starting from the lower-left corner, and induct-
ing in diagonals towards to the upper-right. The base case involves the 2
short red lines in the lower-left and the two blue squares next to them. For
the red, there is nothing to prove, and for the blue, only and can
cover the lower-left square, and both leave the blue square cornerless. The
actual inductive step is completely elementary but painful to write down,
we refer to the reader to the original article for a full proof.

20
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Simple casework remains. Align the above pattern to the lower-left
corner of the rectangle. Suppose that the number of rows a is 1, 2, or
3 (mod 4). By considering the upper-left corner of the rectangle, it is
obvious in every case that there is no valid tiling that respects the red
lines. Similarly, the same is true for b.

The other direction, which says that such rectangles do have tilings, is
easy to see as every 4× 4 block can be tiled as follows:

Recall for dominoes and bars, the answer to flip-connectivity came di-
rectly out of the algorithms for determining if a tiling exists. For this
problem, however, the question of flip-connectivity is more involved, and
was not resolved until more recently by Korn and Pak.

Theorem 4.3 ([KP04]). All tilings of an a×b rectangle by { , , , }
are connected by the following two kinds of flips.

⌟

Proof. Note that the above structural lemma implies for following: if one
divides the rectangle into 2× 2 boxes delimited by the red lines, then every
such box has 3 squares from one tetramino and 1 square from another
tetramino. Following this observation, given a tiling, define a directed graph
with each box as a vertex, and an edge from box A to box B if from the
same tetramino, A has 3 squares and B has 1. With our previous example,
we get the following graph.
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We make the following observations:
1. Every vertex has indegree and outdegree 1, so the graph is a union of

disjoint directed cycles.
2. By the defining property of blue squares, the white boxes on the right

must be bounded by two parallel edges (which may or may not go in
the same direction).

3. A subgraph of Z2 satisfying the above two properties can be used to
reconstruct a tiling.

Because of (1), we can define a “height function” that increases by 1 inside
counterclockwise loops and decreases by 1 inside clockwise loops.

0 0

0

0 0 0 0

00

1

1

1 1 -1

-1 -1 -1

-1

-1 -1 -1

-1

-1-1

-2

We notice that the parity of the height function on shaded squares
is constant along rook moves (i.e. not diagonal). This is generally true
because of (2): when passing by a white square, we pass either no edges
(height unchanged), two edges in opposite directions (height unchanged), or
two edges in the same direction (±2 height). Also, half the shaded squares
are odd and the other half are even, by looking at a corner.

By translating the original claim to these graphs, which is valid by (3),
it remains to show that such graphs are connected by the following flips:

1

1

1

1 -1

0 0 0 0 0

0

00 0

00

0 0

00

0

0

0

00

0

1

1
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We will show that all graphs are flip-connected to the graph of a bunch
of little counterclockwise loops around every other shaded square, which has
height 0 on the outside and 1 inside every little loop. (This corresponds to
repeating a tiling of 4× 4 across the entire rectangle.)

Note that the two flips change the height function only at the middle
square. We apply flips starting where the height is greatest. First, note
that a white square where the height is greatest cannot be bounded by
parallel lines in the same direction, so we flip all of these. Then a shaded
square where the height is greatest must now have edges on all sides, so we
flip all of these. Now the maximum height is smaller, so we repeat, and
similarly increase the height where it is negative. Because of what we noted
about the parity of shaded squares before, this finishes the proof.

One unusual aspect of tilings by T -tetraminoes is that the number of
tilings is related to another commonly studied object in combinatorics: the
Tutte polynomial TG of an undirected graph G. We allow G to have loops
and multiple edges. Denote G \ e the graph obtained by simply deleting
the edge e, and G/e the graph obtained by contracting e: merging the
endpoints before removing e. Then T is defined recursively as

TG = TG\e + TG/e,

where e is any edge that is not a loop or cut edge (an edge whose deletion
disconnects its connected component). The base case is a graph with i cut
edges and j loops, for which TG(x, y) = xiyj . An alternate definition is the
formula

TG(x, y) =
∑
H⊂G

(x− 1)c(H)−c(G)(y − 1)c(H)+|EH |−|VG|,

where c(G) is the number of connected components of G, and the sum is
over all spanning subgraphs.

The Tutte polynomial is able to count many things related G, such as
the following:

• TG(x, 0) is the chromatic polynomial, the number of proper colorings
of the vertices of G using x colors.

• TG(1, 1) is the number of spanning forests of G.
• TG(2, 1) is the number of forests that are a subgraph of G.
• TG(1, 2) is the number of spanning subgraphs of G.

In the same paper as before, Korn and Pak showed the following.

Theorem 4.4. [KP04] The number of tilings of a 4a × 4b rectangle by
{ , , , } is

2TG(3, 3) =
∑
H⊂G

22c(H)−c(G)+|EH |−|VG|+1,

where G is the a× b grid. ⌟



5 Tiling of rectangles

In the previous section, we saw an ad hoc explanation of which rectangles
can be tiled by { , , , }. Now, we turn our attention to tiling
rectangles by arbitrary sets of tiles T . In general, we are interested in the
set ST = {(a, b) ∈ N2 | a× b is tileable by T}, and the question is whether
or not there exists a polynomial time algorithm to decide whether or not
(a, b) ∈ ST . It will be useful for us to have a bit of algebraic language for
this purpose. In this section, N = {1, 2, . . . }.

Definition 5.1. An d-dimensional Klarner system (we will only use n =
1, 2) is a set S ⊂ Nd such that each coordinate is closed under addition.
That is, when d = 2, we have (a, b), (a′, b) ∈ S implies (a + a′, b) ∈ S and
(a, b), (a, b′) ∈ S implies (a, b+b′) ∈ S. A Klarner system S is generated by
P , denoted S = ⟨P ⟩, if S is the smallest Klarner system containing P . ⌟

Equivalently, ⟨P ⟩ is the set of all elements that can be obtained by
P from applying addition in either coordinate as above. The set ST is a
Klarner system, because one can easily construct a tiling of (a+ a′)× b by
stacking tilings of a× b and a′ × b, and similarly for the second coordinate.

The main theorem is the following result, first proven and used with
similar language by de Bruijn and Klarner, but first explicitly stated in
this form by Reid. Both papers proved for general d, but we focus on the
case d = 2 for simplicity. Our proof follows Reid.

Theorem 5.2 ([dBK75, Rei05]). Let S ⊂ N2 be a 2-dimensional Klarner
system and R(y) = {x ∈ N | (x, y) ∈ S} be the set of elements in row y.
Then R(y) is eventually periodic. ⌟

Proof. We first make a few easy observations about R(y).

1. Each R(y) is a 1-dimensional Klarner system. This is obvious.
2. A 1-dimensional Klarner system is finitely generated. To briefly show

this, let m = min(S) and xi = min{x ∈ S | x ≡ i (mod m)}, if it
exists. Then S = ⟨m,x0, . . . , xm−1⟩ (omitting ones that don’t exist).

3. For all y, y′ ∈ N, we have R(y) ∩R(y′) ⊂ R(y + y′). This is obvious.
4. If y | y′, then R(y) ⊂ R(y′). This is also obvious.
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Next, we claim that there exists a maximal R(y). Define the set R∞ =⋃∞
y=1R(y!). By observations (1) and (4), this is an increasing chain of

Klarner systems. Note that the union of an increasing chain of Klarner
systems is Klarner, so R∞ is a (1-dimensional) Klarner system. By ob-
servation (2), R∞ is finitely generated. Write R∞ = ⟨P ⟩. Because P is
finite and P ⊂ R∞, there exists y0 = (y′0)! such that P ⊂ R(y0). Then
R∞ = R(y0), and y | y! for all y ∈ N, so this is maximal by observation (4).

Consider Ry =
⋃∞

n=0R(y + ny0) for 1 ≤ y ≤ y0. By observation (3),
R(y+ny0)∩R(y0) ⊂ R(y+(n+1)y0), and R(y0) is the maximal one, so Ry

is the union of an increasing chain. By the same argument as before, Ry

is finitely generated, and it equals R(y + nyy0) for some ny ∈ N. In other
words, all of the increasing chains stabilize. Hence, after they all stabilize,
i.e. for all y > max{nyy0 | 1 ≤ y ≤ y0}, we have R(y) = R(y + y0).

We can now deduce the answer to our original question as an immediate
corollary. We have the best case scenario: a logarithmic time algorithm for
all T . The result was first noticed in the unpublished manuscript [LMP05].

Corollary 5.3. For any set of tiles T , there is a O(log ab) time algorithm
to determine if (a, b) ∈ ST . ⌟

Proof. By the theorem, R(y) = {x ∈ N | (x, y) ∈ S} is eventually periodic.
So there exist my,My ∈ N such that for all y > My, we have R(y +my) =
R(y). By symmetry, C(x) = {y ∈ N | (x, y) ∈ S} is also eventually
periodic, and there exist mx,Mx ∈ N such that for all x > Mx, we have
R(x+mx) = R(x).

My

My   my

Mx Mx mx

Memorize the points in S in the shaded rectangle. As the rectangle
depends only on T and not the input, it is just a large constant in the com-
plexity of the algorithm. Then, given (a, b) ∈ N2, one uses the periodicity
to do some easy casework and division (by mx and my) to determine which
point (a′, b′) in the rectangle the input corresponds to. We output whether
or not (a′, b′) belongs to our memory. Division takes logarithmic time.

An important note is that this is a non-constructive proof. How does one
actually compute the shaded rectangle? The issue lies in algorithmically
finding a finite generating set for R∞ and Ry in a way that is guaranteed
to terminate. However, no constructive proof can actually exist, because as
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the next section will show, this all leads to a computationally undecidable
problem. That is, we know that an extremely fast algorithm always exists,
but by an unfortunate twist of fate, we may not always be able to find it.

We can further investigate the structure of Klarner systems to reveal
more structure about tilings of rectangles. In fact, what follows is the
original purpose of the two aforementioned papers by de Bruijn and Klarner,
and by Reid.

Proposition 5.4. Given a Klarner system S and p ∈ S, the following are
equivalent:

1. There does not exist (a, b), (a′, b) ∈ S such that (a + a′, b) = p, nor
the second coordinate.

2. The set S \ {p} is a Klarner system.
If either of the above hold, the element p is called a prime. Furthermore,
the set of all primes P is the minimal generating set of S. ⌟

Proof. The equivalence (1) ⇐⇒ (2) is immediate from the definition.
To show that P generates S, first order S by the sum of the coordinates,
then lexicographically. This is a well-order. Let q be the least element of
S \⟨P ⟩. Then q is not prime, so it can be decomposed by (1) into r, s ∈ ⟨P ⟩
because r, s < q. But then q ∈ ⟨P ⟩, a contradiction. Lastly, P is clearly
minimal, since by definition, a removed prime cannot be generated from
other primes.

In tiling language, a rectangle is prime if no tiling of it can be split into
two of tilings of two subrectangles. As an example, recall from the previous
section that if T = { , , , }, then ST = 4N× 4N. The only prime
of this Klarner system is (4, 4). In general, as another corollary of eventual
periodicity, we have the following result.

Corollary 5.5. For any Klarner system S, the set of primes is finite. ⌟

Proof. It suffices to show that S is finitely generated, as one can simply
remove elements until it is minimal to find the set of primes. With the
same picture as the previous corollary, we claim that the shaded rectangle
generates S.

Recall that the periods mx and my are such that C(mx) and R(my) are
maximal. Hence, for all (a, b) outside the shaded rectangle, we first map
it to some (a′, b′) = (a − txmx, b − tymy) inside the shaded rectangle by
periodicity. Because R(my) is maximal, a′ ∈ R(b′) ⊂ R(my). So (a′,my) ∈
S, and we can construct (a′, b) by putting together (a′, b′) and ty copies of
(a′,my). We similarly do the other coordinate to generate (a, b) from the
shaded rectangle.

The paper [Rei05] gives many examples to compute the primes of ST

for small T . (Each computation must use ad hoc methods, since as previ-
ously noted, we gave a nonconstructive proof of the existence of the shaded
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rectangle.) For example, let T contain and its rotations. Then the
primes are (4, 6), (6, 4), (5, 12), and (12, 5). The proof involves a coloring
argument and a couple specific permutations from S32.



Part II

Complexity
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6 An undecidable problem

In Part II, we will begin to investigate the computability and complexity of
tiling in general, including many hardness results. Recall from the previous
chapter that for every set of tiles T , there is a fast algorithm to determine
if a given rectangle a × b is tileable by T . Let us ask a related question:
Given T , is there a rectangle that it can tile? In other words, does ST = ∅?

The answer is, surprisingly, that is no algorithm to solve this. We say
that the problem is undecidable, much like the famous Halting problem.
But to those unfamiliar with computer science, this could seem mysterious:
how do you prove the lack of an algorithm?

In general, such hardness results in the field of computer science are
proven using a technique called reduction. Knowing that a certain problem
L is already hard, one can show that L′ is also hard by somehow encoding
L into the language of L′. Then, if one could solve L′, it would also solve
L, but L is hard, so L′ must also be hard. We will employ this method
throughout the next few chapters.

Let us warm up to the idea of reductions by showing a reduction in
both directions between normal tiling and something called Wang tiling.
One can think about this as meaning that normal tiling and Wang tiling
have the same expressive power, and are equally difficult.

Definition 6.1. A Wang tile is a 1×1 square with sides labeled by a finite
set of colors (for example, a subset of Zk). We may sometimes write a

b
c
d .

Given a set of Wang tiles T , a region Γ ⊂ Z2 is said to be tileable by T if
the tiles in T can be arranged in Γ so that every edge is colored the same
on both sides, and the boundary of Γ is colored by 0. ⌟

For example, one may tile a 1 × 4 rectangle with T = { 1
0

0
0 , 0

0
1
0 } like

1
0

0
0

0
0

1
0

1
0

0
0

0
0

1
0 , but not like 1

0
0
0

1
0

0
0

0
0

1
0

0
0

1
0 , as the colors on the inside don’t

match.

Lemma 6.2. Whether or not ST = ∅ is undecidable for Wang tiling if and
only if it is undecidable for normal tiling. ⌟

Proof. ( =⇒ ) To prove that normal tiling is undecidable, we will show
that if (towards a contradiction) there is an algorithm for it, then there is
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also an algorithm for Wang tiling. Here is the algorithm for Wang tiling:
First, blow up the Wang tiles to become sufficiently large squares. For
every color, create a new small edge pattern (like a puzzle piece), and have
it protrude out of the right and bottom and inset into the left and top. Set
the boundary color 0 to be a flat edge. In the below example, the number
n becomes a bump or indent on the nth square of every edge, but there are
many different ideas that all work.

1
10

2

Then there is a Wang tiling of the original rectangle if and only if there
is a tiling with these puzzle piece tiles of the rectangle appropriately mag-
nified, so we can answer Wang tiling using an algorithm for normal tiling.

( ⇐= ) Here is the algorithm for normal tiling, assuming Wang tiling:
For every tile t, first break it into 1× 1 squares. To assign colors to make
these into Wang tiles, let 0 be the color of the exterior edges. Create new
colors for every interior edge, specific to tile t. This way, any one of these
Wang tiles forces the others to be placed accordingly, as the only color
on more than 2 Wang tiles is 0. Here is an example of how to transform
T = { , }.

0

(1,1) (1,2)
(1,1) (1,2)

00

0
0 (2,1) (2,1) (3,1)

0 0 0
0

0

0
0 0

0
0

0(3,1)

To prove that rectangle tiling is undecidable, we will first use the above
reduction to Wang tiling. Then, we will reduce again to a problem called
Post’s correspondence problem (PCP). That is, we will show how to solve
PCP using Wang tiling. We follow a proof given by Yang.

Recall that A∗ denotes all finite sequences of elements in A. The prob-
lem asks: given words u1, . . . , uk, v1, . . . , vk ∈ {a, b}∗, is there a word
w ∈ {x1, . . . , xk}∗ such that substituting ui for xi (denoted w(u)) pro-
duces the same word as vi for xi (denoted w(v))? For example, if u1 = ab,
u2 = a, v1 = a, and v2 = ba, then the answer is yes, with w = x1x2. A
proof that this problem is undecidable can be found on Wikipedia.
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Theorem 6.3 ([Yan13]). Given a finite set of tiles T , in general it is unde-
cidable if there exists a rectangle that can be tiled by T . ⌟

Proof. We give an algorithm based on Wang tiles to solve Post’s correspon-
dence problem. The approach is based on a few important abstractions
that illuminate the general power of Wang tiles: border tiles, transmitting
wires, and layering. With the above example of a PCP instance, we’re
aiming for a construction that captures the following picture.

a a

aa

b

b

u1

v2

u2

v1

To explain the picture a bit, the top and bottom are the final word
after substitution, keeping in mind which u and v words they originally
come from. These are our border tiles, and we think of them as initial
signals or initial colors. We will have two layers of transmitting wires.
First, the red layer must always go straight up and down, ensuring that the
first part of the signal (a or b) is the same. Second, the blue layer can turn,
but cannot have crossings, and must pair up the first letter of each u and
v word. The blue layer ensures that the order of indices of the u’s and v’s
is the same, as is required by the problem.

Now, let’s formalize. To do layering, the colors that represent signals
on our Wang tiles will be ordered pairs. The first component will be a or
b (the red wire), and the second component will be i ∈ {0, 1, . . . , k} (the
blue wire, with 0 denoting no blue wire). Then, we can create new border
tiles to set up the initial signals. In the below picture, the border tiles are
set up to match our running example.

0
0

0 0

a,1
1,1

1,2
a,1

a,2

a,0

b,0

b,2

0 0
0

00

0

0
0 0 0 0 0

0

0
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More specifically, we will have the four corner tiles above, the left and
right side tiles above, and for every i ∈ {1, . . . , k}, |ui| tiles for ui and |vi|
tiles for vi. These word tiles are forced to appear in blocks using the same
technique as the reduction before (introducing new colors for each internal
edge), and u tiles have the signal on the bottom, whereas v tiles have the
signal on the top.

Continuing the construction, we have tiles for transmitter wires. For
each x ∈ {a, b} and i ∈ {1, . . . , k}, we will introduce the following six tiles.
The two on the left allow the signal to pass through, while the four on the
right allow the blue wire to turn.

x,0

x,ix,0 x,0

x,0

x,i

x,i
,i

x,0

x,i
,i

x,i

x,0

x,i

Finally, we are ready to state our claim. Call the above set of Wang
tiles T . Then there exists a rectangle tileable by T if and only if there exists
a solution to the PCP problem. (This would complete the reduction.)

( =⇒ ) Consider the smallest rectangle tileable by T . Because only
border tiles have 0, starting at the edge of the rectangle, one finds a sub-
rectangle delimited by border tiles. Because we started with the smallest
rectangle tileable by T , the subrectangle is the whole rectangle. In particu-
lar, we can read off a solution to the PCP problem by looking at the order
in which word tiles appear in the top and bottom. This is a valid solution
because the transmitter tiles provide the proof.

( ⇐= ) We essentially ran through the construction of a rectangle
tileable by T when motivating our choice of tiles, so there is nothing left to
prove here.

To give a bit of historical context on this problem, it was a classic result
by Berger in [Ber66] that given a set of tiles T , it is undecidable whether or
not the entire plane is tileable by T . His original proof gave a construction
of a set of Wang tiles that only admitted aperiodic tilings: tilings of the
plane that do not repeat periodically. A reduction to a problem about
affine maps (the immortality problem) shows the undecidability. Recently,
after a long line of work reducing the size of Berger’s original tile set, it was
shown by Jeandel and Rao in [JR15] that the smallest aperiodic Wang tile
set contains exactly 11 tiles.



7 NP-complete tilings

In the previous section, we contrasted the existence of polynomial-time al-
gorithms for tiling of rectangles with the nonexistence of any algorithm for
determining if a tileable rectangle exists. But this was a kind of fundamen-
tally different problem: we have previously been studying problems where
the region Γ is part of the input, not something quantified over. So it re-
mains to ask: we have seen many algorithms, but is there a set of tiles T
for which it is computationally hard to determine if an input region Γ can
be tiled? We review some basic definitions from computational complexity.

Definition 7.1. A decision problem L ⊂ {0, 1}∗ (encoded as the set of all
true instances) belongs to the class NP if there exists a polynomial-time
algorithm A such that:

• For all x ∈ L, there exists a polynomial-length string y such that
A(x, y) outputs true (accepts).

• For all x ̸∈ L, A(x, y) outputs false (rejects) for all strings y. ⌟

Informally, true instances have proofs y that can be quickly checked.
Clearly, tiling an input x = Γ by fixed T belongs to the class NP, as an
example tiling (y above) can easy be checked to be valid in polynomial
time. So, tiling cannot be too hard. In particular, with Wang tiles, there
is always at least an exponential-time, polynomial-space algorithm by just
enumerating every possibility and checking each one.

Definition 7.2. The problem L ∈ NP is NP-complete if an oracle that
answers queries to L can be used to answer all other problems in NP in
polynomial time (i.e. a reduction exists). ⌟

Informally, NP-complete problems are the hardest problems in NP. It
is initially not clear that NP-complete problems even exist, but the hugely
important Cook–Levin theorem proved that a problem called SAT (satisfi-
ability) is NP-complete. Most people do not believe that polynomial time
algorithms exist for NP-complete problems (i.e. they believe P ̸= NP).

A CNF (conjunctive normal form) formula in the Boolean variables
x1, . . . , xn is a conjunction (∧ or “and”) of disjunctions (∨ or “or”) of literals
x1,¬x1, . . . , xm,¬xn. Each disjunction of literals is called a clause. The
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SAT problem asks: given a CNF formula, does there exist an assignment
α : {x1, . . . , xn} → {0, 1} that makes the formula true? For example,
(x1 ∨¬x3)∧ (¬x1 ∨x2 ∨x4) is a CNF formula, and setting all the variables
to true is a satisfying assignment.

Cook’s proof (Levin was an independent discovery) takes an input x and
the Turing machine (algorithm) A that checks membership in L, and writes
a SAT formula in variables y that is true if and only if the Turing machine
accepts on (x, y). Therefore, the SAT formula has a satisfying assignment
if and only if the Turing machine accepts for some proof y.

Knowing that SAT is NP-complete, it is much easier to prove that other
problems are NP-complete by reducing them to SAT. For example, it is
easy to see that 3SAT, which restricts each clause to at most 3 literals, is
NP-complete. For every long clause (ℓ1 ∨ · · · ∨ ℓn), introduce new variables
z3, . . . zn−1 and replace the long clause with

(ℓ1∨ℓ2∨z3)∧(¬z3∨ℓ3∨z4)∧· · ·∧(¬zn−2∨ℓn−2∨zn−1)∧(¬zn−1∨ℓn−1∨ℓn).

The meaning of zi is “we rely on ℓi, . . . , ℓn to satisfy the clause,” from
which it is clear that the new clauses have a satisfying assignment if and
only if the original long clause does. Many further variants of SAT are also
NP-complete, such as planar 3SAT: the problem where the CNF formula,
when drawn as a logical circuit in the plane, has no wire crossings. One
can do this reduction by replacing every crossing with a few new variables
and clauses, see Wikipedia for details.

The existence of NP-complete tiling problems has been known since the
beginning of NP-completeness theory. In fact, it was one of six problems
mentioned in Levin’s original paper, although Levin did not provide a proof.
Since then, several papers have come out giving examples of tile sets T for
which tiling is NP-complete. Recall the linear-time (with some logarithms)
Kenyon–Kenyon algorithm for determining if a simply connected region Γ is
tileable with bars 1×k and ℓ×1 (we showed and ). It turns out that
if one removes the simply connected requirement, the problem becomes NP-
complete. This result should also be contrasted with recalling that running
a perfect matching algorithm solves domino tiling in polynomial time, even
when the region is not simply connected.

Theorem 7.3 ([BNRR95]). Tiling Γ ⊂ Z2 by T = { , } (or any 1× k
and ℓ× 1 bars, for k, ℓ ≥ 2 and k + ℓ ≥ 5) is NP-complete. ⌟

The proof technique involves a reduction to planar 3SAT by engineering
“logic gates” out of tilings, but the actual gates are quite complicated to
draw in this case. The following result by Moore and Robson uses a larger
set of tiles and the same proof technique, which leads to a much cleaner
construction.

Theorem 7.4 ([MR01]). Tiling Γ ⊂ Z2 by T = { , , , , } is
NP-complete. ⌟
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Proof sketch. As noted above, it suffices to translate every planar SAT
formula, i.e. a circuit drawn in the plane, into a region Γ that has a tiling if
and only if the formula is satisfiable. We will show a simple example, note
some of the additional technicalities, and refer readers to the original paper
for the full proof. Note that because a ∨ b is equivalent to ¬(¬a ∧ ¬b), it
suffices to translate ¬ and ∧ gates. Here is an example of Γ constructed
from ¬a ∧ b. (The interior lines are to be disregarded, they delineate what
we consider “gates” vs. “wires” and are irrelevant for tiling.)

out

b

a

not

and

A key feature of this region is that after fixing a tiling for the input
portions (here a and b), the tiling is locally forced, working from input to
output. Here are attempts of tilings constructed from the local uniqueness
property. You can see the two tilings of a source, the two tilings of ¬ gate,
and the four tilings of a ∧ gate.

false false

true

true

true

false

false

false false

true

true false



36 7. NP-complete tilings

It may still be mysterious how one should write down steps to construct
such a region, but after seeing the example, it should feel reasonable that
this process is possible. To say a couple more details, the wires are a priori
straight and travel in one of eight directions with knight’s move periodicity.
Every non-wire element has ports with fixed direction and “parity”. The
following picture shows the definition of a source.

good wrong
direction

wrong
parity

wrong
place

Note that the truth value carried on a wire can be determined by
whether the “middle” square (marked in red above, bounded by parallel
lines) is part of the preceding tile (true) or following tile (false), where the
order goes from sources to output. Verify this on the previous examples,
although it can be tricky to find the middle square when the wire is bending.

Two types of wire bending were shown in our original example, which
together allow any direction to change into any other direction. On the
left, the wire leaves source a in the (1,−2) direction as required, and then
bends to the (2,−1) direction as required for the ¬ gate. Between the ¬
gate and ∧ gate, the wire does not need to bend. On the other side, the
wire leaves b in the (1,−2) direction and makes a 90◦ bend to the (−2,−1)
direction, which is the required direction for the second input to an ∧ gate.
One checks that after every bend, the truth value is preserved.

There are two more elements of the construction which were not needed
in our simple example. Both are simple pictures, and the original paper has
details. First, one needs a way to split one wire into two. And secondly,
when the graph is not a tree, wires may not fit when they have the wrong
“parity”, as hinted above. There is an easy way to rotate between all
parities, which again is detailed in the original paper.

To summarize all the results on tiling that we have seen so far, we know
that for dominoes, it is easy to determine if a general region Γ is tileable,
but for even slightly more complicated tilesets, it is hard. On the other
hand, for rectangular regions Γ, there is always an efficient algorithm. In
the middle remains simply connected Γ, which we investigated before and
used techniques like Conway’s tiling group to find efficient algorithms for
specific T . One may wonder if simply connected regions can be hard to
tile, and indeed they can be, due to a more recent result by Pak and Yang.
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Theorem 7.5 ([PY13b]). There exists a finite set of (Wang) tiles T such
that tiling simply connected Γ ⊂ Z2 by T is NP-complete. ⌟

Proof. The proof is a reduction to cubic monotone 1-in-3SAT, a variant of
SAT known to be NP-complete by [Gon85] (where it is stated in slightly
different language). 1-in-3SAT means that exactly one literal in every clause
is allowed to be true. In 1-in-3SAT, monotone means that there are no
negations. (This would trivialize the problem in normal 3SAT by setting
all variables to true, but is hard in 1-in-3SAT.) Lastly, cubic means that
every variable appears in exactly 3 clauses. By simple counting, this means
there are the same number of variables and clauses. One visualizes this as a
bipartite graph with variables x1, . . . , xn on one side and clauses c1, . . . , cn
on the other, where each vertex has degree 3.

Note that the problem is a little different than our previous use of Wang
tiles. Here, T is not part of the input, so our reduction needs to construct
a set of Wang tiles T that work no matter how long the SAT formula is.
But we note a few similarities:

1. We can still specify arbitrary border colors for our region. Recall how
Wang tiling without border colors implies an algorithm for normal
tiling, and vice versa. That second algorithm (creating edge patterns
like puzzle pieces) actually works for Wang tiling with border colors,
as our region no longer needs to be a rectangle and can have edge
patterns on the boundary. And obviously, Wang tiling with border
colors implies an algorithm for Wang tiling without. So all three
problems are equivalent under polynomial time reductions.

2. We can still use the concept of wires, signals, and layering, as long as
the number of distinct signals is fixed.

Hence, consider the following example, which represents the CNF formula
(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x3). The region Γ is the large
rectangle, the border colors are shown on the outside, and a proper tiling
is shown on the inside corresponding to x1 = 0, x2 = 1, and x3 = 0.
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Along the left, we use border colors to force variable tiles, which emit
three 0 or three 1 signals. Along the right, we force clause tiles, which
receive exactly one 1 signal and two 0 signals. Variable tiles and clause
tiles are forced to come in stacks of 3 using the same technique as in solving
normal tiling with Wang tiling: introduce some new colors that are unique
to each interior edge.

Using border colors along the bottom, the entire wiring is actually fixed.
In particular, we have a special signal (∗) to start a diagonal signal, a special
signal (∗∗) to start a vertical signal, and a 2-stack tile that exchanges red
signals at the spot where the blue signals intersect. To summarize, there are
6 kinds of wire tiles: red horizontal only, blue vertical with red horizontal,
2 tiles for the exchange, and 2 tiles for the blue diagonal (one blue on the
bottom and right, the other on the left and top).

We can find an appropriate order of the wire transpositions by looking
at the aforementioned bipartite graph and reading off the edge crossings
from left to right, and then we space out the crossings and place the ∗ and
∗∗ signals accordingly. The resulting Γ may be very wide, but definitely
still polynomial, so the reduction is done.

Pak and Yang actually proved more. In the same paper, they extend
this result by showing that one may take T to be a set of rectangles, by
essentially finding a way to simulate the Wang tiles with rectangles. This
is in contrast to previous work by Kenyon–Kenyon and Rémila mentioned
in previous sections, which showed that when T contains just 2 rectangles,
the problem admits a polynomial time algorithm. This original paper used
106 rectangles, which has since been reduced many times, and the current
record is 117 [Yan13]. It remains open to close the gap between 117 and 2.



8 #P-complete tilings

We turn our attention to counting tilings. Here is one basic question: how
many tilings of Γ by dominoes exist? Like most questions about dominoes,
it turns out that counting the number of domino tilings admits a polyno-
mial time algorithm. This follows from general techniques about perfect
matchings, which will be covered in Chapter 11. But how about other
problems? It turns out that most are quite difficult.

Definition 8.1. Suppose we have a decision problem L with two inputs
x and y. The counting problem “given x, how many y exist such that
(x, y) ∈ L?” belongs to the class #P (sharp P) if L ∈ P. A problem in #P
is #P-complete if every other problem in #P can be reduced to it. ⌟

When L ∈ NP, we denote #L ∈ #P the problem of counting the number
of proofs of x, and we call it the counting version of L. (Note that there
can be many ways to prove x, but typically there will be one “obvious”
way, which is what we will mean.) For example, #SAT counts the number
of accepting assignments to a CNF formula. The counting analog is always
harder then the original decision problem: given a solution to the counting
problem, simply output whether or not the count is at least 1 to solve the
decision version.

The problem #SAT is #P-complete. This is a consequence of the proof
the Cook–Levin theorem, which was what is called a parsimonious reduc-
tion. A reduction solving L1 using L2 is called parsimonious if it relies on
a bijection between L1 and L2 in which inputs identified by the bijection
have an equal number of proofs. For example, the reduction we gave solving
SAT using 3SAT is not parsimonious. Recall that we replaced every long
clause (ℓ1, . . . , ℓn) with

(ℓ1∨ℓ2∨z3)∧(¬z3∨ℓ3∨z4)∧· · ·∧(¬zn−2∨ℓn−2∨zn−1)∧(¬zn−1∨ℓn−1∨ℓn).

Note that by introducing new variables, we increased the number of
satisfying assignments. (For example, if ℓ1 ∨ ℓ2 and ℓ3 are both true, then
z3 can be assigned anything.) However, it is an elementary exercise to
modify this to become a parsimonious reduction, where there is exactly one
satisfying assignment to the new variables for every satisfying assignment
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to the original variables, and this would show that #3SAT is #P-complete.
Planar #SAT is also #P-complete. In fact, even #2SAT, the problem of
satisfying CNF formulas with 2 literals per clause, is #P-complete, despite
the fact that the decision version admits a polynomial time algorithm.

We note that the reduction used in the Moore–Robson result on the NP-
completeness of tiling by { , , , , } was indeed parsimonious:
the tiling was unique once the inputs were fixed, so the number of tilings is
the same as the number of satisfying assignments. Because planar #SAT
is #P-complete, this tiling problem is also #P-complete.

How about the Pak–Yang result on simply connected regions? The
reduction is indeed parsimonious: recall that the wiring is fixed, so the
number of tilings is the number of satisfying assignments. However, it is
actually not known whether or not counting cubic monotone 1-in-3SAT is
#P-complete. Instead, to prove #P-completeness, the authors use a similar
parsimonious reduction to 2SAT.

Theorem 8.2 ([PY13b]). There exists a finite set of (Wang) tiles T such
that tiling simply connected Γ by T is #P-complete. ⌟

Proof. Given a 2SAT formula, the main challenge is that the number of
times each variable is used is no longer fixed, and that some of these must
be negated. However, we are allowed to engineer an appropriate left border
for every formula. Because we know for every xi, how many times it appears
positively and negatively in the formula, we introduce the following 4 border
signals: “start x”, “end x”, “start ¬x”, and “end ¬x”, as well as signals
for edge cases where the start is the end, x does not appear negatively,
etc. This creates wires from the start of each variable to the end of each
variable, ensuring that they are the same value, and the wire tile adjacent
to “start ¬x” is required to negate the value of the wire. Lastly, we change
the clause tiles accept 10, 01, and 11 (because this is 2SAT), and the rest is
the same as before. We note this is parsimonious, so the theorem is proved.

Below is the example (x1 ∨¬x1)∧ (x1 ∨ x2)∧ (x2 ∨¬x2) with satisfying
assignment x1 = 1, x2 = 0. Note that we set the border signals by counting
that x1 appears twice positively and once negatively, likewise for x2.
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Of course, the question about #P-completeness is most interesting when
in fact, the decision version of the problem is in P, as is the case for #2SAT.
Are there tiling problems of this nature? In our usual setting of the plane
Z2, nothing is known: it remains open, for example, whether tiling by bars
1 × k and ℓ × 1 is #P-complete, even for general (non-simply connected)
regions. If we allow ourselves Z3, the following is a theorem of Valiant.

Theorem 8.3 ([Val79]). Counting the number of tilings of Γ ⊂ Z3 by domi-
noes is #P-complete. ⌟

Note that by running any perfect matching algorithm as before, tileabil-
ity by dominoes, even in 3 dimensions, admits a polynomial time algorithm,
so this is interesting.

Proof. The following is known: it is #P-complete to count the number of
perfect matchings (subset of edges containing every vertex exactly once) in
cubic (3-regular) bipartite graphs. So it suffices to solve this problem using
domino tiling in a parsimonious way.

Every graph can be embedded in 3 dimensions without crossing edges.
Moreover, we can draw the edges as integer paths, i.e. a sequence of points
in Z3 where adjacent points differ by exactly 1 in exactly 1 coordinate. We
can further stipulate that the paths are sufficiently spaced apart so that no
two paths touch, considered as sequences of cubes. Lastly, recall that our
graph is bipartite. If we color Z3 in a checkerboard pattern, we can make
sure that one part has vertices on white cubes, and the other has vertices
on black cubes. A vertex is drawn below.

Note that all paths between vertices involve an even number of cubes.
Hence, given a perfect matching, we can construct a domino tiling as fol-
lows: for every edge in the matching, (uniquely) tile the path between the
two vertices (including the endpoints). Because the matching is perfect, the
remaining paths in the graph have both endpoints already tiled, so they are
still even length, and there exists a unique tiling of them. It is clear that
this is a bijection.

In [PY13a], Pak and Yang improve upon this result by showing that
even for simply connected Γ ⊂ Z3, tileability by dominoes is #P-complete.



9 Sequences of tiling counts

Until now, we have considered the question of whether Γ is tileable by
T . We have also considered the question of counting how many ways Γ
can be tiled by T . In this section, we will go one step further and ask:
given a sequence of regions Γ1,Γ2, . . . , what can we say about the sequence
a(1), a(2), . . . , where a(n) is the number of tilings of Γn by T?

One elementary example found in undergraduate textbooks involves
tiling the sequence of regions , , , . . . by T = { , }. A sim-
ple induction argument shows that a(n) is the nth Fibonacci number.

Here is another example about domino tilings. Let Γn be a 2n×2n grid.
Then we can bound the asymptotic growth of a(n): 2n

2

< a(n) < 42n
2

. The
lower bound comes from choosing one of two tilings of a 2 × 2 square n2

times. The upper bound comes from using a checkerboard pattern and
picking one of four white squares adjacent to each of the 2n2 black squares.
Kasteleyn calculated the precise asymptotic to be e4Gn2/π ≈ 3.210n

2

, where
G = 1− 1

4 + 1
9 − 1

25 + · · · ≈ 0.916 is Catalan’s constant [Kas61].
Asymptotics are interesting, but the complexity of an infinite sequence

can often be better captured through studying its generating function. For
a more detailed description of the below classes, see Chapters 4 and 6 of
Richard Stanley’s Enumerative Combinatorics [Sta11, SF99]. We recap
some of the main ideas as they pertain to our discussion here.

Definition 9.1. The (ordinary) generating function associated with the
sequence a(1), a(2), . . . is the formal power series A(t) =

∑∞
n=1 a(n)t

n.

• If A(t) = P (t)
Q(t) for some polynomials P and Q with rational coef-

ficients, we say that A(t) is rational. Equivalently, a(n) satisfies a
linear recurrence with constant coefficients.

• If P0(t) + P1(t)A(t) + · · ·+ Pn(t)A(t)
n = 0 for some P0, . . . , Pn with

rational coefficients, we say that A(t) is algebraic of degree n.
• If a(n) = f(n, . . . , n) for some f for which F (x̄) =

∑
n̄ f(n̄)x̄

n̄ is
rational, we say A(t) is the diagonal of a rational.

• If P0(t)A(t)+P1(t)A
′(t)+ · · ·+Pn(t)A

(n)(t) for some P0, . . . , Pn with
rational coefficients, we say A(t) is differentiably finite. Equivalently,
a(n) satisfies a linear recurrence with coefficients polynomial in n. ⌟
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These classes are known to contain each other in the listed order, but
are different. For some examples, the Fibonacci numbers satisfy a linear
recurrence with constant coefficients, and is hence rational. The central
binomial coefficients

(
2n
n

)
have generating function is A(t) = 1√

1−4t2
(the

proof is not immediate but well-known, see Wikipedia). This is clearly not
rational, but is algebraic as it satisfies (1− 4t2)A(t)2 − 1 = 0.

The generating function of the closely related sequence a(n) =
(
2n
n

)
2 is

the diagonal of F (w, x, y, z) = 1
(1−w−x)(1−y−z) . To see this, note that

1
1−f =∑

n f
n, and the coefficient of wnxnynzn in (

∑
n(w + x)n)(

∑
n(y + z)n) is

clearly
(
2n
n

)
2. In [Fur67], Furstenberg noted that this generating function

is not algebraic.
The number of permutations of n, that is, a(n) = n!, is differentiably

finite, as it satisfies the recurrence a(n) = na(n−1). This is not a diagonal,
as diagonal functions have non-zero radius of convergence, whereas A(t) =∑

n n!t
n converges only at t = 0. Lastly, one example that lies outside

of this hierarchy entirely is the number of alternating permutations: those
that satisfy σ(1) < σ(2) > σ(3) < σ(4) > · · · [FGS05].

Now we can ask: where do tilings fall in this picture? Here is one answer,
regarding the case where Γn is a rectangular strip with fixed height. The
following is due to Merlini, Sprugnoli, and Verri.

Theorem 9.2 ([MSV00]). Fix any set of T and let Γn be a k×n rectangle.
Then if a(n) denotes the number of tilings of Γn by T , A(t) is rational. ⌟

Proof. Let m be the maximum width of any tile in T . Consider tiling Γn

from left to right. That is, we always identify the leftmost column with an
unoccupied square, then place a tile that covers the topmost unoccupied
square in this column. Note that under this process, we only have to focus
on a k × m window at all times. We call this window that notes which
squares are currently occupied the tiling state.

Below, we draw all the tiling states for T = { , , } with k = 2.
The leftmost, topmost square (where the next tile will go) is marked with
a dot. Note that the configurations that do not appear in our tiling process
are not shown.

A1 A2 A3 A4

We can draw a directed graph with states as vertices and edges labeled
by tiles to show how we can transition between states by placing a tile
on the dot. (In computer science, this is known as a deterministic finite
automaton.) We note that every tiling of 2×n corresponds to a closed walk
in this graph from the starting state A1 to itself.
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A1

A2A3 A4

Next, let A1(t), . . . , As(t) be generating functions, where the corre-
sponding sequence ai(n) is the number of tilings of a strip that ends in
state Ai and has length n. Note that A1(t) = A(t). We write a system of
equations. In particular, if one transitions from state Ai to Aj using a tile
that occupies c new columns, we include the term tcAi(t) in the expres-
sion for Aj(t). We also include the term 1 for our initial state A1, because
a1(0) = 1. Our running example produces the following.

A1(t) = 1 + tA1(t) +A2(t) +A3(t) +A4(t)

A2(t) = tA1(t) + tA3(t) +A4(t)

A3(t) = tA2(t)

A4(t) = t2A1(t)

This is a linear system of equations. So we solve using some simple linear
algebra and conclude that A1(t) is a rational function in t. In particular,
for this example, we get:

A(t) = A1(t) =
t− 1

−t3 + t2 + 3t− 1
= 1 + 2t+ 7t2 + 22t3 + 71t4 + · · · .

If you prefer to think in linear recurrences, one can easily translate the
above system of equations. For instance, the last equation above translates
to a4(n) = a1(n−2). By finding the recurrence for a1, this proof essentially
shows that the simple induction argument mentioned in the beginning for
domino tilings is actually sufficient to solve all strip tiling problems.

As noted by Garrabrant and Pak in [GP14a], tilings actually belong to a
class smaller than rationals: N-rational functions. This is the smallest set of
rational functions containing polynomials and closed under sum, product,
and the operation f∗ = 1

1−f =
∑

n f
n whenever this sum exists (it does if

and only if f(0) = 0). These are often studied in relation to automata and
regular languages in theoretical computer science.
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To get more complicated sequences, we can do one of two things: either
allow the region to increase in both dimensions, or consider non-integer tiles.
Let us discuss the second option first. We note that tiles with rational side
lengths can be effectively made integer by scaling, so we would need to use
irrational side lengths.

For example, consider tiling a 1×n rectangle by 1×( 12+ϵ) and 1×( 12−ϵ)
tiles, where 0 < ϵ < 1

2 is any irrational number. By elementary counting,

the number of possible tilings is the central binomial coefficient
(
2n
n

)
. We

noted before that this is algebraic and not rational.
If we take T to be rectangles 1× ( 12 ± ϵ1) and 1× ( 12 ± ϵ2) for irrational,

algebraically independent 0 < ϵ1, ϵ2 <
1
2 , then with a bit of work we can

count that there are
(
2n
n

)
2 ways to tile 1× n. We noted before that this is

diagonal and not algebraic.
In general, we have the following result, due to Garrabrant and Pak.

Note the additional restriction that T consists of tiles of height 1, i.e. touch-
ing both the top and bottom boundaries of the region, although the authors
conjecture that the theorem would also hold without the restriction.

Theorem 9.3 ([GP14a]). Given a(n), the following are equivalent
1. There exists a set of (real) height 1 tiles T such that 1× n is tileable

by T in a(n) ways.
2. a(n) is the sum of products of binomial coefficients with linear argu-

ments (i.e. something like
∑

k,ℓ

(
2n+k+2

k

)(
2k
ℓ

)
2). ⌟

In particular, one can show that a(n) satisfying (2) has diagonal gener-
ating function, and is hence also differentiably finite.

Next, recall that Wang tiles and normal (integer or rational) tiles are
computationally effectively the same. This will make our arguments a bit
simpler as we discuss what are the possible sequences that can be expressed
in square Γn, extending in both dimensions. We do have an obvious asymp-
totic bound: 0 ≤ a(n) ≤ |T |n2

, by choosing one of |T | tiles in each spot,
so a(n) cannot grow too quickly (say, doubly exponential). Resolving this
in full is still an open question, but at the very least, we know of many
positive examples of a(n) that can be counted, and they span our entire
hierarchy of classes. Here are a few, again due to Garrabrant and Pak.

Proposition 9.4 ([GP14b]). There exists a set of Wang tiles T such that
with Γn being the n× n square, a(n) counts

1. the Catalan numbers.
2. the number of permutations n!.
3. the number of alternating permutations.
4. the number of connected graphs on n vertices. ⌟

Proof. To be able to translate these results into normal tilings of squares,
we will not allow border colors in the sense we used when studying NP-
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completeness. However, we can still make a set of border tiles: the pattern
in which they are arranged just needs to be fixed, as all of ours will be.

1. The idea is to encode Dyck paths. We first encode the diagonal by
using boundary tiles to force the gray wires to be present in all tilings.
Next, we introduce color-changing wires that mark off the Dyck path
(shown as a dotted line). These start off red, then change to blue
(except the bottom wire, which is always blue). Blue wires always
generate downwards black wires. There are no tiles in which red
wires touch a black wire from above or enter a diagonal tile, so they
are forced to stay in a region outlined by a Dyck path.

Notably, Catalan numbers form an algebraic rational generating
function that is not rational. Computing this is actually quite simple:
one recalls the recurrence Cn+1 =

∑n
i=0 CiCn−i and then computes

that generating function satisfies F (t)2 = F (t)−1
t .

2. We simply draw permutation matrices. Our wires start from the left
and bottom, and the ones of the permutation matrix are the places
where wires can change from red to blue. Otherwise, colors must pass
through. Because every wire must change from red to blue exactly
once, this counts permutations. (Coloring changing points are marked
for visibility, they are not part of the wiring.)
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Recall that n! gives a differentiably finite generating function that
is not a diagonal of a rational (or algebraic).

3. We modify the previous example by introducing some new wires. If
we think about σ(i) as the dot in the ith row, we enforce σ(1) < σ(2)
with a black wire that starts on the left, goes down one square when
hitting the dot, and must hit a red wire. Similarly, a light gray wire
enforcing σ(2) > σ(3) starts on the right and must hit a blue wire
when going down.

We note that some special care needs to be taken for the boundary
tiles in this case. The left and right boundary tiles need to come in
stacks of 2 to alternate the existence of wires. Also, the bottom-left
and bottom-right corners need to have 1-stack and 2-stack options,
in order to make both odd and even n work.

Recall that the number of alternating permutations is not even
differentiably finite.

4. Our last example is surprising because unlike the previous ones, there
is no natural way to draw a connected graphs on n vertices in a n×n
grid. (One could represent a graph by its adjacency matrix, but
there is no obvious way to check that it is connected.) Instead, the
technique is to recall the following recurrence for c(n), the number of
connected graphs on n vertices:

c(n) =

n∑
k=1

(
n− 1

k − 1

)
(2k − 1)c(k − 1)c(n− k).

The idea is to forget about graphs and focus on representing the
equation directly. The full details are left to the reader.
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Related problems
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10 Partitions and rim hooks

In this final part, we will see some miscellaneous topics that can be read at
any point after the first few sections of Part I. Here, we turn our attention
to labeled tilings called rim hook tableaux. These place numbers on top of
tilings of regions that look like Young diagrams of partitions. Let us review
some basic notions about partitions:

Definition 10.1. A partition λ of n into k parts is a tuple (λ1, . . . , λk)
such that λ1 ≥ · · · ≥ λk and λ1 + · · · + λk = n. The Young diagram of
λ (in English notation) is constructed by stacking rows of length λi in left
alignment. A standard Young tableau of λ is an assignment of {1, . . . , n}
to the squares of the Young diagram such that the numbers increase along
rows and columns. ⌟

For example, this is a standard Young tableau of λ = (3, 3, 2, 1).

1 2 4 6
10953

7 8
11

Definition 10.2. A rim hook of size k is a tile with k squares and at most
1 square in each northwest-southeast diagonal (henceforth diagonal). The
set of rim hooks of size k is denoted Tk. ⌟

Note that this notion of diagonal coincides with the diagonals we saw
when coloring. For example, T2 = { , } is the set of dominoes and
T3 = { , , , } is the set of tiles used in Conway–Lagarias’ tiling
of triangular regions. Notably, , ̸∈ T3. Also, because rim hooks are
equivalently constructed by starting with a square and only adding squares
to the top and right, |Tk| = 2k−1.

Definition 10.3. A k-rim hook diagram (k-RHD) is a partition λ that
admits a tiling by Tk. Note that a k-RHDs must be a partition of kn for

49
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some n. A k-rim hook tableau (k-RHT) is a particular tiling of a k-RHD λ
by Tk with labels {1, . . . , n} on the rim hooks, increasing along every row
and column. ⌟

For example, this is a 3-RHT of λ = (3, 3, 3).

1

3
2

The primary goal of this section will be investigate the structure of k-
RHDs and k-RHTs. Recall that Young diagrams are related by a poset
structure, in which λ < µ if λ is visually a subset of µ. The poset forms a
lattice, which is known as Young’s lattice. The following structural result
is due to Fomin and Stanton.

Theorem 10.4 ([FS97]). Let Y denote Young’s lattice, and denote Yk the
subposet of Y consisting of k-RHDs. Then

Yk ∼= Y k.

Moreover, the respective labeled structures (k-RHTs and k-tuples of stan-
dard Young tableaux) are also in bijection. ⌟

Before a formal proof, we will follow an example from [Pak00]. Consider
the partition λ = (9, 8, 7, 7, 7, 4). One possible 3-RHT of λ is shown below.

1
2 4

3 7 10
9

5
8
13

12
11

14
6

The bijection works as follows. First, rotate the figure 135◦ counter-
clockwise, which is called Russian notation for partitions. Measure the
lengths of all of the diagonals (now vertical lines). Then, because every
3-rim hook has 3 squares across 3 contiguous diagonals, we can draw each
rim hook as a flattened line beneath the 3 diagonals that it contributes to.
(If multiple rim hooks start on the same diagonal, for example 4 and 9,
it doesn’t matter which comes first.) They maintain their labels and get
assigned 1 of 3 colors, depending on their starting diagonal mod 3.
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1 1 2 2 3 4 5 5 5 4 4 3 2 1
13

8
5
12
4
9
1
11

10
2
7
3
14
6

Lastly, we consider each color separately, and collect the rim hooks that
start on the same diagonal. Taking black rim hooks for example, there
is at first 1 (8), then 2 (4, 9), then 2 more (2, 7), then 1 last one (6).
Turning each rim hook into a square and drawing them in this order, with
labels increasing from bottom to top, the diagonal length sequence we get
is 1221, and the partition is as shown below. Note that there are actually
2 partitions corresponding to a diagonal length sequence of 1221, the one
shown below and its mirror image. We always choose to set the main
diagonal of the colored partitions along the squares whose corresponding
rim hooks pass through the main diagonal in the original, here 2 and 7.

2 11 1 1 1 1 1 2 2 1

13
5
11

1
3 12

10
14

8
9

4
7

2
6

The bijection identifies the original k-RHT we showed with the three
standard Young tableaux above, with labels appropriately changed while
maintaining the order. It also identifies the k-RHD λ = (9, 8, 7, 7, 7, 4) with
the 3-tuple of partitions ((3, 2), (2, 1), (3, 3)), if you forget about the labels.
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Proof of Theorem 10.4. The proof is really just a list of definitions, and
seeing that these definitions exactly characterize the structures we encoun-
tered in the example above.

Definition 10.5. Call f : Z → Z a fairy (short and magical) sequence if:
1. f is weakly increasing on (−∞, 0] and weakly decreasing on [0,∞).
2. |f(i)− f(i+ 1)| ≤ 1 for all i ∈ Z.
3. f(i) = 0 for all i sufficiently large (in absolute value). ⌟

Fairy sequences are in natural bijection with diagonal length sequences
of partitions, where f(0) records the height of the main diagonal. We saw
how to biject between these in both directions in the above example, so the
proof details are left to the reader to verify.

Definition 10.6. Call f : Z → Z a k-fairy sequence if f is fairy and for all
0 ≤ a, b ≤ k − 1, we have

∑
i≡a (mod k) f(i) =

∑
i≡b (mod k) f(i). ⌟

There is a natural bijection between k-fairy sequences and k-RHDs.
Every k-RHD can be split into lines of length k as we did in the example,
and every line contributes 1 to every sum mod k in the above definition, so
the sums are the same. Conversely, given a k-fairy sequence, one constructs
a Tk-tiling τ of λ inductively.

Next, given f0, . . . , fk−1 fairy sequences, define

g(i) =

k−1∑
r=0

fr

(⌊
i+ r

k

⌋)
.

This captures what we mean by setting the main diagonal in the colored
partitions. We can check easily that g is a k-fairy sequence, and in fact
that such g are in bijection with f0, . . . , fk−1.

Corollary 10.7. For any partition λ of n, the number of k-RHTs of λ
can be computed in time polynomial in n. In particular, if λ is in bijection
with partitions µ1, . . . , µk of m1, . . . ,mk respectively, then there are(

n

m1, . . . ,mk

)
#SYT(µ1) · · ·#SYT(µk)

k-RHTs of λ, where
(

n
m1,...,mk

)
= n!

m1!...mk!
is a multinomial coefficient and

#SYT(λ) denotes the number of standard Young tableaux of λ. ⌟

The number of standard Young tableaux of λ can be computed cleanly
and efficiently by the hook length formula (see Wikipedia), from which the
corollary follows.

This bijection between rim hook tableaux and tuples of Young tableaux
also has consequences for flip connectivity. We can prove the following:
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Theorem 10.8. [Pak00] All k-RHTs (and consequently k-RHDs) are con-
nected by flips involving 2 tiles (2-flips). ⌟

With k = 2, this is a special case of our previous result that domino
tilings of simply connected regions are connected by flipping two horizontal
tiles for two vertical ones. But even with k = 3, this is new and interesting.
For 3-RHTs, the following (and their rotations) are all the possible types
of flips (with a < b). (The last type shows labels changing on two tiles,
without the tile shapes changing.)

a
a

a
a

a
a

a

a

b

b
b

b

b
b

b
b

Proof of Theorem 10.8. Instead of k-RHTs, we can equivalently talk about
a tuple of standard Young tableaux (µ1, . . . , µk) by the bijection. Define a
partial order P on the squares of µ1 ∪ · · · ∪ µk, increasing along rows and
columns (squares of different partitions are incomparable).

Recall that for a poset P = (X,<) with |X| = n, we say that f : X → [n]
is a linear extension if f is a bijection and order-preserving. Define a graph
G(P ) = (V,E) where V consists of all the linear extensions of P , and two
linear extensions f and g are connected by edge if and only if f(x) = g(x)
for all but two x ∈ X. For example, if the shape is just the one partition
(3, 2), then G(P ) is the following graph.

1 2 2

2

2

2

1 1

11

3
3 3

3 3

4
4

4

4
4

5 5
5

5
5
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It remains to show that G(P ) is connected, since the bijection would
imply that the k-RHTs are connected by 2-flips. To do this, let f be the
lexicographically smallest linear extension of P , and g′ any other linear
extension of P . Let g be the lexicographically smallest linear extension
connected to g′, and suppose for contradiction m is the smallest number
for which f and g differ. But by the ordering, in g, it must be that m is
to the left and below m − 1. Flipping them produces a lexicographically
smaller linear extension connected to g′, a contradiction.

Going back to the example where we showed all possible flips of 3-RHTs,
one immediate corollary of this theorem is that difference in the number of
the two triangular trominoes is constant for any fixed k-RHD. This gives a
completely different proof of the same lemma that we used tiling groups for
in an earlier section. But unlike tiling groups, this technique allows us to
prove similar relations for higher k, giving a set of equations not unlike the
Dehn-Somerville equations for simplicial polytopes. (As mentioend before,
tiling groups become much smaller as the number of tiles increases, which
reduces their usefulness.)

Theorem 10.9 ([Pak00]). Let Tk be the set of tiles and N = |Tk|. Let vi, v′i
be the number of tiles ti in tilings τ, τ ′ of a k-RHD, respectively. Then we
have the following group isomorphism:

ZN/⟨(v1, . . . , vN )− (v′1, . . . , v
′
N )⟩τ,τ ′ ∼=

{
Zm+1 if k = 2m+ 1

Zm × Z2 if k = 2m.

In other words, when k = 2m + 1, there are m + 1 linearly independent
equations relating the number of each tile, and when k = 2m, there are m
linearly independent equations over Z and one more mod 2. ⌟

Note that one equation that is always satisfied is the area invariant:
that the sum of the number of tiles is constant. When k = 2, for example,
we get that the number of horizontal tiles is constant mod 2, and when
k = 3, we additionally get the equation we just mentioned above.

Of course, all of these results are for k-RHDs, whereas the theorems they
purportedly extend are true for all simply connected Γ. In later papers,
both this result on linear relations between tile counts [MP02] and flip-
connectivity of tilings [She02] were extended to all simply connected Γ.



11 Matchings

Recall that the problem of domino tilings in Z2 is a specific case of the
problem of perfect matchings in general graphs. In this section, we will
study matchings in general. Recall that an O(m

√
n) algorithm to decide if

a general graph has a perfect matching is given by Micali and Vazirani in
[MV80], but it is rather complicated. Instead, we will present some general
techniques to work for a wider range of problems, being satisfied with any
polynomial time algorithm or even randomized polynomial time algorithm.
We give a definition to make clear what we mean by this.

Definition 11.1. The complexity class BPP (bounded probabilistic poly-
nomial) consists of all decision problems L for which there exists a polyno-
mial time algorithm A satisfying:

1. If x ∈ L, then Prr[A(x, r) = 1] ≥ 2
3 .

2. If x ̸∈ L, then Prr[A(x, r) = 0] ≥ 2
3 . ⌟

By repeating a BPP algorithm a polynomial number of times with in-
dependent random strings r and outputting the majority result, one can
boost the success probability to 99.99% or even 1 − 2−n. Hence for all
practical purposes, BPP is just as good as P, and the constant of 2

3 in the
definition is arbitrary (any constant strictly greater than 1

2 will do). Some
people actually believe that BPP = P.

Proposition 11.2. Let G = (V1⊔V2, E) be a simple bipartite graph. Then
there is a BPP algorithm to decide if G has a perfect matching. ⌟

Note that this will be a proof to illustrate basic ideas only. For bi-
partite graphs, determining the existence of a perfect matching has a fast,
clean, and deterministic solution given by Hopcroft—Karp algorithm (see
Wikipedia), which is not the solution we will present here.

Proof. First, only the case |V1| = |V2| is interesting, there are no perfect
matchings otherwise. So let n = 2k, where k = |V1| = |V2|. Consider the
matrix AG = (aij) over all i ∈ V1 and j ∈ V2 defined by

aij =

{
xij if (i, j) ∈ E

0 otherwise,
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56 11. Matchings

introducing a variable xij for every edge. (When xij = 1 for all edges,
this is called the biadjacency matrix.) A perfect matching is a generalized
diagonal in AG of non-zero entries. Recalling that

det(AG) =
∑
σ∈Sk

sign(σ)a1σ(1) · · · akσ(k),

it is clear that G has no perfect matching if and only if det(AG) = 0 (as an
equality of polynomials over any field).

Although we can easily compute determinants of scalar-valued matrices
in polynomial time (by Gaussian elimination or other methods), det(AG)
as a polynomial may have exponentially many terms. The key observation
is that polynomials tend to have very few zeros, so if you randomly pick a
point to evaluate det(AG) on, chances are that if you only find zeros, then
the polynomial is really identically zero. This strategy is formalized by the
following extremely fundamental lemma.

Lemma 11.3 (Schwartz–Zippel lemma). LetQ(x1, . . . , xm) ∈ Fq[x1, . . . , xm]
be a non-zero polynomial and deg(Q) = d. Pick a1, . . . , am ∈ Fq uniformly
at random. Then

Pr[Q(a1, . . . , am) = 0] ≤ d

q
. ⌟

Proof. By induction on m. When m = 1, the fact that Pr[Q(a1) = 0] ≤ d
q

is just the fundamental theorem of algebra. Now suppose it is true form−1
and write

Q(x1, . . . , xm) =

d∑
i=1

Qi(x1, . . . , xm−1)x
i
m.

Because Q is non-zero, we can consider the largest i for which Qi is non-
zero. Because Qi is multiplied by xim, it has degree at most d − i, so by
induction

Pr[Qi(a1, . . . , am−1) = 0] ≤ d− i

q
.

In the event that Qi(a1, . . . , am−1) ̸= 0, we note that because we chose the
largest i, we get that Q(a1, . . . , am−1, xm) is a degree i polynomial in xm.
By the base case, we get that

Pr[Q(a1, . . . , am) = 0 | Qi(a1, . . . , am−1) ̸= 0] ≤ i

q
.

Adding these together, the claim is proved.

To finish the algorithm to decide if G has a perfect matching, note that
every term in det(AG) has degree k. Hence, find a prime p between 3k and
6k (one exists by Bertrand’s postulate, and we can check the whole range
for primes using any method like the Sieve of Eratosthenes) and work in the
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field Fp. Pick aij ∈ Fp randomly for all edges (i, j) and compute det(AG)
on these inputs (for example, by Gaussian elimination). Output that a
perfect matching does not exist if the determinant is zero, and that one
exists otherwise.

In the case that there is no perfect matching, the determinant is always
going to be zero, and we will always output correctly. If there is a perfect
matching, by the Schwarz–Zippel lemma, we fail to detect it with proba-
bility at most k

3k = 1
3 , so the chance of success is 2

3 and we are good.

The key ideas above were the matrix AG and the Schwartz–Zippel
lemma. Now, we will use extremely similar ideas to tackle the case of
general graphs.

Theorem 11.4. There exists a BPP algorithm to determine if a simple
graph G = (V,E) has a perfect matching. ⌟

Proof. We will still use the Schwartz–Zippel lemma, but the matrix AG for
bipartite graphs no longer makes sense for general graphs. Instead, consider
the matrix BG = (bij) over all i, j ∈ V , defined by

bij =


xij if {i, j} ∈ E and i < j

−xji if {i, j} ∈ E and i > j

0 otherwise,

introducing a variable xij for every edge, written with i < j. For example,

BK4
=


0 x12 x13 x14

−x12 0 x23 x24
−x13 −x23 0 x34
−x14 −x24 −x34 0

 .
Note that BG is a skew-symmetric matrix, that is, BG = −BT

G. With a
skew-symmetric matrix, one can consider the Pfaffian of the matrix, which
has nice properties. Before the definition, let us set some common notation
for permutations: for the permutation ( 1 2 3

2 1 3 ), we may write it as 213 in
one-line notation (without parentheses), or (12)(3) = (12) in cycle notation.

Definition 11.5. Let B = (bij) ∈ Fn×n be a skew-symmetric matrix, and
consider perfect matchingsM of {1, . . . , n}, written as {(i1, j1), . . . , (ik, jk)}
satisfying ir < jr for all r.

Let sign(M) = sign(i1j1i2j2 . . . jk). (To emphasize, this is a permuta-
tion in one-line notation.) This is well-defined because although the edges
can be written in any order, it takes two transpositions in the permutation
(one for i and one for j) to compensate for any swap in the edge order, and
sign does not change for an even number of transpositions.
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Let bM = bi1j1 · · · bikjk . The Pfaffian of B is then defined as the quantity

pf(B) =
∑
M

sign(M)bM . ⌟

As an example, let’s compute the Pfaffian of BK4
. There are 3 perfect

matchings of {1, 2, 3, 4}: {(1, 2), (3, 4)}, {(1, 3), (2, 4)}, and {(1, 4), (2, 3)}.
The permutations 1234, 1324, and 1423 have signs 1, −1, and 1 respectively.
Hence pf(BK4) = x12x34 − x13x24 + x14x23.

The Pfaffian’s most useful property is the following. The proof technique
is an important idea that we will use again.

Proposition 11.6. Let B be skew-symmetric. Then det(B) = pf(B)2. ⌟

Proof. We start with a lemma.

Lemma 11.7. The set Ωn = {σ ∈ Sn : σ has only even cycles} is in bijection
with ordered pairs of perfect matchings of {1, . . . , n}. ⌟

Proof. Clearly both sets are empty when n is odd, so assume that n is even.
Consider {1, . . . , n} as the vertices of Kn. Given two perfect matchings
M,M ′ of Kn, consider M ∪M ′ (as the union of subgraphs). Every vertex
is incident to one edge fromM and one edge fromM ′, so the graphM ∪M ′

consists of disjoint even cycles, each of whose edges alternate between M
and M ′. Orient every cycle so that the edge leaving the smallest vertex in
each cycle is from M . An example is shown below (M is red, M ′ is blue),
producing (12)(3456).

1

2

3

4

5

6

Conversely, given a permutation σ, break it into cycles and alternate the
edges betweenM andM ′, starting withM for the edge leaving the smallest
element of the cycle. This exactly recovers the two matchings above.

Denote det(B) =
∑

σ∈Sn
bσ where bσ = sign(σ)b1σ(1) · · · bnσ(n). We can

simplify this sum with the following two observations.
1. Suppose σ has a fixed point σ(i) = i. Because B is skew-symmetric,

its diagonal is zero, so bσ = 0.
2. Suppose σ has an odd cycle (but no fixed points). Fix an order on all

odd cycles in Sn such that every cycle is adjacent to its inverse, and
let σ∗ be σ with the smallest odd cycle reversed. Recall that revers-
ing a cycle does not change the sign of the permutation. However,
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reversing an odd cycle flips the indices of an odd number of biσ(i) into
bσ(i)i = bσ(i)σ∗(σ(i)). Because B is skew-symmetric, this picks up an
odd number of negative signs, so bσ = −bσ∗ . Because σ∗∗ = σ, we
have paired up all such σ to cancel each other out.

We are left summing over σ made of even cycles only. From the lemma,
denote ϕ the bijection from pairs of perfect matchings of {1, . . . , n} to
permutations of only even cycles. We get that

det(B) =
∑
M,M ′

sign(ϕ(M,M ′))b1ϕ(M,M ′)(1) · · · bnϕ(M,M ′)(n)

=
∑
M,M ′

sign(M) sign(M ′)bMbM ′

= pf(B)2.

The fact that b1ϕ(M,M ′)(1) · · · bnϕ(M,M ′)(n) = bMbM ′ is just a reordering
of terms, by a quick definition check. To show that sign(ϕ(M,M ′)) =
sign(M) sign(M ′), just note that both are equal to (−1)n−c = (−1)c, where
c is the number of cycles in ϕ(M,M ′).

To finish the algorithm to determine if a graph has a perfect matching,
we use the Schwarz–Zippel lemma again to test if det(BG) = 0. Because
det(BG) = pf(BG)

2, this is also a test if pf(BG) = 0. But looking at
the definition of the Pfaffian, we pick up a term exactly when a perfect
matching M of Kn has all of its edges in E, i.e. G has a perfect matching,
so we are done.

As one more application of these ideas, we will apply them to the related
problem of exact matchings. Given G = (V,E), a subset of edges R ⊂ E,
and an integer 0 ≤ r ≤ n, the problem is to decide if there exists a perfect
matching M ⊂ E such that |M ∩R| = r.

Theorem 11.8. There is a BPP algorithm to decide if an exact matching
exists. ⌟

Proof. Define the matrix BG,R = (bij), where

bij =



xij if {i, j} ∈ E \R and i < j

xijz if {i, j} ∈ R and i < j

−xji if {i, j} ∈ E \R and i > j

−xjiz if {i, j} ∈ R and i > j

0 otherwise.

Note that BG,R is skew-symmetric. Recalling the definition of Pfaffian,
every term of the Pfaffian corresponds to a perfect matching of G, and the
exponent of z in each term corresponds to the number of edges in R. Hence
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if we write pf(BG,R) =
∑k

i=0 pi(x)z
i, we are interested to know if pr(x) = 0.

Our goal is to do polynomial identity testing via the Schwartz–Zippel lemma
on pr(x), so it remains to show how to compute pr(x) efficiently given a
random input of xij ’s.

Fix inputs xij . We can write det(BG,R) =
∑n

i=0 qi(x)z
i. As a polyno-

mial in z, it has degree at most n, and hence by testing n+ 1 values for z
along with the fixed xij ’s, we can use Lagrange interpolation to compute
the coefficients of det(BG,R) as a polynomial in z. Taking the square root
of this polynomial, we get the coefficients of pf(BG,R) as a polynomial in
z, one of which is just pr(x).

Notably, this is one of the few problems for which, as of writing, a BPP
algorithm is known, but no deterministic algorithm is known. Another
one is polynomial identity testing: whether a polynomial p(x) is identically
zero. A major problem that used to belong to this category was testing
if an integer is prime, but a deterministic algorithm for that was found
relatively recently: the AKS primality test.

Next, just as we counted tilings, we now tackle the problem of counting
matchings. Before tackling the problem in generality, we will see the solu-
tion for domino tilings. This was originally given by Kasteleyn, who studied
the problem for its relevance in crystal physics, where domino tilings are
referred to as the dimer model.

Theorem 11.9 ([Kas61]). Let G ⊂ Z2 be a simply connected subgraph.
There is a polynomial time algorithm to compute the number of perfect
matchings in G. ⌟

Proof. Give horizontal edges weight xe = 1, give vertical edges weight xe =
i =

√
−1, and let B be the (weighted, skew-symmetric) adjacency matrix

of G. We claim that |pf(B)| is the number of perfect matchings of G.
Because the Pfaffian is related to the determinant, we get a polynomial
time algorithm for counting the number of perfect matchings.

Looking at the definition of Pfaffian, it suffices to show that under this
choice of weights, sign(M)bM is constant for all M . Because we know that
domino tilings for simply connected regions are connected by flips, it suffices
to show that sign(M)bM is preserved by a flip.

Note that after a flip, sign(M) is negated, because the permutation
i1j1 · · · ikjk undergoes a single transposition. At the same time, bM is also
negated, because two horizontal edges (product 1) are exchanged for two
vertical edges (product −1).
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The key idea in this was that the product of edge weights around a
square is −1. With a bit more work, one can make the above technique
work for non-simply connected regions. In fact, we can generalize even
further to all planar graphs G. The result is known as the FKT (Fisher–
Kasteleyn–Temperley) algorithm, given in [Kas67].

To briefly outline the proof, note that a choice of weights xij ∈ {±1}
for the edges of a graph G can be thought of as orienting every edge. For
planar G, call such a choice a Pfaffian orientation if all faces with an even
number of edges, an odd number of edges are pointed clockwise. We first
notice that every planar graph has a Pfaffian orientation. Fix a spanning
tree T of G and an arbitrary orientation (below in red). Then, it can be
shown that the remaining edges can be efficiently oriented (below in blue,
the edges marked with × can be either direction).

Lastly, it can be shown that such a choice of weights makes sign(M)bM
have the same sign for all matchings M . A polynomial time algorithm
for computing |pf(B)|, which is exactly the number of perfect matchings,
follows again from determinant algorithms.

How about non-planar graphs? The problem turns out to be hard to
compute exactly, but we have some approximation results due to Chein.

Theorem 11.10 ([Chi04]). Let G = (V,E) be a simple graph and assign
edge weights xij ∈ {±1} uniformly at random. Then the number of perfect
matchings of G is E[detB], where B is as usual. ⌟

Proof. We’ll use a casework technique that we seen before. Write det(B) =∑
σ∈Sn

bσ where bσ = sign(σ)b1σ(1) · · · bnσ(n). By linearity of expectation,
we can consider the contributions of each bσ. Notice the following.

1. Suppose σ has a fixed point σ(i) = i. Because B is skew-symmetric,
bσ = 0.

2. Suppose σ2 ̸= 1. Then the product bσ contains some bij but not bji.
The choice of bij ∈ {±1} was independent of all other edges, so we
have E[bσ] = E[bij · · · ] = E[bij ]E[· · · ] = 0.

We are left with σ such that σ2 = 1 and there are no fixed points. These
are exactly the σ that represent perfect matchings on {1, . . . , n}, each cycle
in σ being a pair. Additionally, b1σ(1) · · · bnσ(n) = (−1)n/2 = sign(σ) (by
counting the number of transpositions), so bσ = 1 in this case.

By itself, this simple result allows weak randomized approximation using
Markov’s inequality. The original paper proves some more bounds on the
variance for a slightly tighter result.
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