
University of California, Los Angeles
CS 281 Computability and Complexity

Instructor: Alexander Sherstov
Scribe: Glenn Sun
Date: November 10, 2020

LECTURE

12

Randomized Complexity Classes

Following our introduction to randomized algorithms in the previous lecture, we begin by
giving two more canonical examples of randomized algorithms that highlight common tech-
niques in the field. Then, we formally define the complexity classes associated with ran-
domness and prove their relationships with each other.

12.1 More examples of randomized algorithms

The next problem we tackle will be perfect matching in bipartite graphs. Recall that a
perfect matching is a subset of the edge set that uses every vertex exactly once. The problem
of determining whether or not a bipartite graph has a perfect matching is indeed possible
in deterministic polynomial time. For example, one may reduce it to a max-flow problem
and solve it using the theory of network flows. The Edmonds–Karp algorithm for max-flow
often found in textbooks runs in O(nm2) time, and currently best known algorithms can
solve max-flow in O(nm) time [4]. Because m is can be as large as O(n2), one may regard
these as taking O(n5) time and O(n3) time, respectively.

Proposition 12.1. There exists a randomized algorithm that determines whether a bipartite
graph contains a perfect matching using O(nω) time with 99% accuracy, where ω = 2.37...
is the currently best known matrix multiplication constant.

Proof. Let G be a bipartite graph and consider the matrix representation of G where rows
correspond to vertices on the left and columns correspond to vertices on the right, with 0s
and 1s as entries denoting whether or not an edge exists between the two vertices. This
is sometimes called the biadjacency matrix. Replace each 1 in this matrix with a different
variable xij , and call the resulting matrix M . That is,

This image has been redacted for copy-
right.

Recall that if Sn denotes the symmetric group of order n (i.e. the permutations of
{1, . . . , n}), then

detM =
∑
σ∈Sn

sgn(σ)M1σ(1) · · ·Mnσ(n).

Amazingly, detM is a nonzero polynomial if and only if G has a perfect matching. This
is because for every σ ∈ Sn, the term sgn(σ)M1σ(1) · · ·Mnσ(n) is non-zero (i.e. is exactly
sgn(σ)x1σ(1) · · ·xnσ(n)) if and only if the corresponding matrix entries in the biadjacency
matrix were all 1, meaning that there is an edge between the ith vertex on the left and the
σ(i)th vertex on the right for all i, which is exactly the definition of a perfect matching. No
two terms in the summation cancel each other out because although sgn(σ) can be either 1
or −1, the variables will always be different.

The algorithm is then very simple. Choose each xij at random from a sufficiently large
finite field Fp. Then plug those values into M and compute the determinant, and claim that
there is a perfect matching if detM 6= 0, or that there is no perfect matching if detM = 0.

A technicality is finding a sufficiently large finite field. We will show that finding a prime
p in the range [100n, 200n] gives us the desired accuracy. This range indeed contains a prime
by Bertrand’s postulate (see last lecture). We may simply check each number in the range
to see if it is prime.

Let us analyze the correctness. When G has no perfect matching, detM is the zero
polynomial, so it will always evaluate to 0 on any input and we will always answer correctly.
On the other hand, when G has a perfect matching, the bad event is when our random
choices form a root of the polynomial detM . Note that each non-zero term in detM has
degree n, so the entire polynomial has degree n. Then by the Schwartz-Zippel lemma, the
bad event happens with probability at most n

|Fp| ≤
n

100n = 1
100 , which achieves the desired

99% accuracy.
Lastly, let us quickly discuss the running time. Checking if a number is prime takes

O(logc n) time by the AKS primality test [1], but even doing simple divisibility checks takes
just O(

√
n) time. So finding the finite field takes O(n

√
n) time at most. Hence the bulk of

the computation comes from computing the determinant of M . It turns out that computing
determinant can be reduced to matrix multiplication through LU factorization [3], and the
current best known algorithm for matrix multiplication takes O(n2.373...) time [2].

The fact that the bulk of the complexity comes from matrix multiplication (or find-
ing determinant) is extremely helpful, because matrix multiplication is an extremely well-
studied problem with not only fast algorithms but parallelizable algorithms. Although the
O(n2.373...) algorithm has an unrealistically high constant coefficient, even Gaussian elim-
ination for determinant takes just O(n3) time, which matches the best known algorithm
for max-flow asymptotically and beats its constant coefficient by an astronomical amount.
Strassen’s algorithm for matrix multiplication takes O(n2.807...) time, beating all known
flow-based methods, and is also realistically feasible to implement and run.

This result again highlighted the technique of using polynomials and the Schwartz–Zippel
lemma, which we saw used in a basic sense in the previous lecture. Although the application
of this technique was a little more advanced, the same core idea shows the power of using
polynomials in randomized algorithms.

Our last example is 2SAT, the language of 2CNF formulas with a satisfying assignment.
In the midterm exam, we showed that 2SAT may be solved deterministically in linear time.
There are many ways to do so, for example, by reducing the problem to directed graph and
running the strongly connected components algorithm. Obviously, linear time is a lower

12-2

bound for this problem, so our randomized solution will not be better. We present it just
to illustrate another common technique in randomized algorithms: the random walk.

Proposition 12.2. There exists a randomized algorithm that solves 2SAT in O(n2) time
with 99% accuracy.

Proof. Consider the following algorithm: start with an arbitrary assignment, and as long
as the assignment is not a satisfying assignment, pick an arbitrary unsatisfied clause and
flip one of the variables at random, for a maximum of 100n2 iterations. If we never reach a
satisfying assignment, we claim that the 2SAT instance is not satisfiable. Clearly this runs
in O(n2) time.

To analyze the algorithm, it is clearly always correct on no-instances, since we will
never reach a satisfying assignment. For yes-instances, let x∗ = (x∗1, . . . , x

∗
n) be a satisfying

assignment, and for i = 0, 1, . . . , n, let Ai be the set of assignments that differ from x∗ in
exactly i places. Although there may be more than one satisfying assignment, we will just
fix one satisfying assignment as an upper bound on the probability of failure.

As previously alluded to, we interpret our algorithm as a random walk between the sets
A0, . . . , An, and the goal is to reach A0 (i.e. the satisfying assignment x∗). We have the
following picture:

This image has been redacted for copyright.

The transitions between the sets are characterized as follows:

• From A0, the algorithm terminates.

• From An, the algorithm moves to An−1 with probability 1. This is because we flip
one variable, all of which were wrong, so now one variable is correct.

• From Ai where 0 < i < n, the algorithm moves to Ai−1 with probability at least
1
2 , and to Ai+1 with the complement probability. The exact probability depends on
the actual assignment, but in any violating clause, at least one of the two variables
must be wrong. We flip one at random, so we flip a wrong variable to correct with
probability at least 1

2 , and the other way around with the complement probability.

Define Ti to be the expected number of iterations it takes to reach A0 from Ai, or
rather, because this expectation may depend on the actual assignment in question by the
third bullet above, let Ti be the maximum such expectation over all x ∈ Ai. Then the
following three equations follow directly from the above three bullets:

T0 = 0 (1)

Tn = 1 + Tn−1 (2)

Ti ≤ 1 + 1
2Ti−1 + 1

2Ti+1 for 0 < i < n (3)

12-3

This is n + 1 linear (in)equalities in n + 1 variables, so we may solve the system in a
number of standard ways. For instance, add together equation (1), n2 times equation (2), and
i times equation (3) for each 0 < i < n. We get that T0+T1+2T2+· · ·+(n−1)Tn−1+ n

2Tn ≤
n2

2 + 1
2T0 + T1 + 2T2 + · · ·+ (n− 1)Tn−1 + n−1

2 Tn. Most terms cancel out, and multiplying
by 2 yields Tn ≤ n2.

Recall that Tn is an upper bound on the expected time it takes to reach x∗. Then by
Markov’s inequality, the probability of not reaching x∗ after 100n2 iterations is bounded by
1

100 , achieving the desired 99% success probability.

The theory of random walks is rich and far deeper than we can cover in a single example.
One amazing classical result is that any random walk on an infinite 1- or 2-dimensional grid
passes through every point with probability 1, or equivalently, returns to its starting point
with probability 1. In other words, we are guaranteed the success of many random walk
solutions to problems, provided that enough time is given. Unfortunately, this result does
not hold in higher dimensions. This fact was first shown by George Pólya [5], and Shizuo
Kakutani later succinctly communicated the result with the catchphrase: “A drunk man
will find his way home, but a drunk bird may get lost forever.”

12.2 Randomized complexity classes

With knowledge of a few examples of randomized algorithms, we now turn our attention to
categorizing them into complexity classes. There are two main complexity classes that we
will study. Denote the indicator function of a language L by 1L.

Definition 12.3 (BPP, RP). A language L is in the class BPP if there exists a polynomial
time Turing machine M such that for all x ∈ {0, 1}∗,

P(M(x, r) = 1L(x)) ≥ 2

3
.

Similarly, a language L is in the class RP if there exists a polynomial time Turing machine
M such that

P(M(x, r) = 1L(x)) ≥

{
2
3 if x ∈ L
1 if x 6∈ L

.

We call r ∈ {0, 1}∗ the random string, and it should be polynomial length. In practice,
these bits may be obtained from thermal noise in a computer or other sources of randomness.
Although M is a deterministic Turing machine, M can output different results on the same
input x when given different random strings, achieving the desired random behavior.

It is critically important that only r is probabilistic, not the input x. In other words,
these classes require a good chance of correctness on all inputs. No matter what the input
is, running the machine many times changing only the random string produces the correct
output a 2

3 fraction of the time.
For RP, notice that the accuracy requirement is different for x ∈ L and x 6∈ L. RP

algorithms have one-sided error, in particular, they do not make errors on inputs x 6∈ L.
Stated differently, RP algorithms do not have false positives (you can trust it if it claims
x ∈ L), but may have false negatives. In contrast, BPP algorithms have two-sided error.

It is not hard to check that co RP, the class of complements of languages in RP, can
be alternatively characterized by switching the roles of 2

3 and 1. That is, co RP algorithms

12-4

do not make errors on inputs x ∈ L, do not have false negatives, and potentially have false
positives. Recall that our matrix multiplication verification algorithm from last lecture was
always correct when AB = C, placing that language in co RP. In contrast, one can easily
check that the two examples from this lecture are in RP.

As trivia, BPP stands for “bounded-error probabilistic polynomial time” and RP stands
for “randomized polynomial time”. One might also wonder if the constant 2

3 is significant.
After all, we did achieve 99% accuracy on our two examples today. We will resolve this
question in the next section.

Proposition 12.4. The following containments are correct:

1. P ⊂ RP ⊂ BPP and P ⊂ co RP ⊂ BPP.

2. RP ⊂ NP and co RP ⊂ co NP.

Proof. Item (1) is trivial. Any problem in P can be solved correctly in polynomial time with
probability 1, placing it both RP and co RP. Any problem in RP or co RP must only admit
one-sided error, so it is also in BPP, which allows two-sided error.

To show (2), that RP ⊂ NP, consider the random string as the certificate. In particular,
because P(M(x, r) = 1L(x)) > 2

3 > 0 for x ∈ L, there exists at least one random string r
such that M(x, r) = 1L(x). This exactly matches the definition of NP. In particular, we
have certificates for yes-instances and we reject all no-instances, just as required.

The technique of showing existence by instead showing non-zero probability is called the
probabilistic method. We will see many more applications of this idea in future lectures,
where we will be able to appreciate the true power of the the probabilistic method.

One might wonder what the upper bound on BPP is. Trivially, BPP ⊂ PSPACE because
one may simply try every random string while reusing space, then output the majority
answer. Some people conjecture that in fact BPP = P, but the current best known upper
bound is BPP ⊂ Σ2 ∩ Π2. This is Sipser–Gács theorem, whose proof we delay to the next
lecture because it is a substantially non-trivial result.

12.3 Error reduction

As alluded to, one extremely useful fact about RP and BPP is that the constant of 2
3 in their

definition does not matter at all. In RP, it is equivalent to require a success probability
anywhere from 1

polyn to 1 − e− polyn, and in BPP it is equivalent to require a success

probability anywhere from 1
2 + 1

polyn to 1− e− polyn. (By poly n, with the convention that

n = |x|, we mean nc for some c ∈ R, or sometimes nc for all c ∈ R, depending on context.)
What this means is that any problem in RP or BPP can be computed more accurately as

the input size increases, and in fact the accuracy improves exponentially as the input grows.
This is the best that anyone could ever hope for, and it makes RP and BPP algorithms
extremely practical, because most real-world applications do not care about errors that are
this rare. On the other hand, to show that a problem belongs on RP or BPP, we only need
to solve it with a fairly low success probability.

We start with the proof for RP, since it is simpler.

12-5

Theorem 12.5 (Error reduction for RP). Let L be a language, and suppose there exists a
polynomial time Turing machine M such that

P(M(x, r) = 1L(x)) ≥

{
1

polyn if x ∈ L
1 if x 6∈ L

.

Then there exists a polynomial time Turing machine M ′ such that

P(M ′(x, r) = 1L(x)) ≥

{
1− e− polyn if x ∈ L
1 if x 6∈ L

.

Proof. Because M does not make errors on x ∈ L, we may run M multiple times on
independent random strings, and we know that if any run ever rejects, then the correct
answer must be to reject. Otherwise, we accept. The chance that M is wrong every time
we run it is very small, so the only question is how many times do we need to run M?

Denote the number of times we run M by N . Note that the inequality ex ≥ 1+x implies
1− x ≤ e−x. Then, the probability of being wrong all N times is given by

P(M ′(x, r) 6= 1L(x)) ≤
(

1− 1

poly n

)N
≤ (e−1/ polyn)N .

From here, it is easy to see that setting N to a polynomial reduces the probability of error
to e− polyn. This gives us our polynomial running time for M ′, as well as our 1 − e− polyn

probability of success, as was to be shown.

The inequality that 1 − x ≤ e−x is important and extremely widely used in the field
of randomized algorithms, because multiplying terms of the form e−x is much easier than
terms of the form 1− x. It allows us to derive cleaner bounds without sacrificing accuracy,
since it is very tight when x is small.

For BPP, this simple inequality does not work because the two-sided error requires a
different approach to bounding the probability of the bad event. The alternative tool we
will use is the Chernoff bound, which we discussed in the previous lecture.

Theorem 12.6 (Error reduction for BPP). Let L be a language, and suppose there exists a
polynomial time Turing machine M such that for all x ∈ {0, 1}∗,

P(M(x, r) = 1L(x)) ≥ 1

2
+

1

poly n
.

Then there exists a polynomial time Turing machine M ′ such that for all x ∈ {0, 1}∗,

P(M ′(x, r) = 1L(x)) ≥ 1− e− polyn.

Proof. Since M may make errors on both sides, there is only one sensible thing to do. Let
M ′ be the Turing machine that runs M for a total of N times on independent random
strings and returns the majority answer. Again, let us see what N has to be.

Recall that the Chernoff bound says that if X1, . . . , XN are independent indicator ran-
dom variables with probability of success p, then for all δ > 0,

P
(∣∣∣∣X1 + · · ·+XN

N
− p
∣∣∣∣ ≥ δ) ≤ 2e−2δ

2N .

12-6

In other words, the probability that the empirical mean deviates from the theoretical mean
decreases exponentially in both the error and the number of trials. If we let X1, . . . , XN

denote whether or not the result is correct each time we run M , note that

P(M(x, r) 6= 1L(x)) = P
(
X1 + · · ·+XN ≤

N

2

)
= P

(
X1 + · · ·+XN

N
− p ≤ 1

2
− p
)

≤ P
(∣∣∣∣X1 + · · ·+XN

N
− p
∣∣∣∣ ≥ p− 1

2

)
≤ 2e−2(p−

1
2)

2N

≤ 2e−2(1/ polyn)
2N .

Because (1
polyn)2 is still just the inverse of a polynomial, setting N equal to larger polynomial

gives us the desired e− polyn probability of failure. (The multiplicative constant 2 in front
can be absorbed into the poly n term.)

In the next lecture, we will wrap up our discussion of randomness by proving the Sipser–
Gács theorem that BPP ⊂ Σ2 ∩ Π2, as well as covering some other miscellaneous topics in
randomness.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. Primes is in p. Annals of Mathematics, 160, 09
2002.

[2] J. Alman and V. V. Williams. A refined laser method and faster matrix multiplication,
2020.

[3] M. Lavrov. Determinant and matrix multiplication complexity? Mathematics Stack
Exchange.

[4] J. B. Orlin. Max flows in o(nm) time, or better. In Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, STOC ’13, page 765–774, New York, NY,
USA, 2013. Association for Computing Machinery.

[5] G. Pólya. Über eine aufgabe der wahrscheinlichkeitsrechnung betreffend die irrfahrt im
straßennetz. Mathematische Annalen, 84:149–160.

12-7

