
University of California, Los Angeles
CS 281 Computability and Complexity

Instructor: Alexander Sherstov
Scribe: Glenn Sun
Date: November 5, 2020

LECTURE

11

Oracle Characterization of Σk and Πk
and Introduction to Randomness

This lecture begins by wrapping up our discussion of the polynomial hierarchy by giving
an alternative way to understand the classes Σk and Πk through the lens of oracle-aided
computation. Then, we begin our discussion of randomized algorithms. Because this unit
will require more mathematical background than previous units, we first quickly review
some mathematics, then discuss our first example of a randomized algorithm.

11.1 Oracle characterization of Σk and Πk

Recall that we used notations such as PO (or NPO) to mean the class of languages com-
putable with a polynomial time deterministic (resp. non-deterministic) Turing machine with
the assistance of an oracle that decides the language O. When O is a complete problem for
some complexity class, for example NP-complete, we may also write PO and NPO as PNP

and NPNP, respectively. This notation is well-defined, because for any two NP-complete
languages O and O′, we may convert between instances of either problem in deterministic

polynomial time, so PO = PO
′

(resp. for NP).
In Stockmeyer’s original paper definining the polynomial hierarchy [2], the oracle charac-

terization of Σk and Πk were actually used as the definition. For us, it is just an alternative
way to understand the polynomial hierarchy. We begin by showing a characterization of Σ2,
and then we will generalize to the rest of the polynomial hierarchy.

Proposition 11.1. Σ2 = NPNP.

Proof. (⊂) Let L ∈ Σ2, so that by definition, there exists a polynomial time Turing machine
m such that

x ∈ L ⇐⇒ ∃u1 ∀u2M(x, u1, u2) = 1.

Note that we may replace ∀u2M(x, u1, u2) = 1 with ¬∃u2M(x, u1, u2) = 0. Hence it
suffices to consider u1 as the NP certificate, and ask the NP oracle for the answer to
∃u2M(x, u1, u2) = 0. We simply output the opposite.

(⊃) This direction is a little trickier, since the oracles are computationally unbounded.
The best time bound we have for a SAT-solver is still EXP, so the trivial simulation clearly

is not possible. Instead, fix a language L ∈ NPNP with a Turing machine M that decides it
appropriately, and consider the following:

This image has been redacted for copyright.

That is, we observe the communication transcript between the Turing machine M and
the SAT oracle. The machine M first asks a question only dependent on x and u, and
receives a single bit a1 back from the oracle. Then the next question asked by M is a
function of x, u, and a1, and the process repeats polynomially many times. Instead of
simulating the oracle itself, we will try to simply verify the communication between M and
the oracle instead.

We encode this idea into a Σ2 formula as follows. Note that the output of M is 1
(equivalently, x ∈ L) if and only if there exists a certificate u, SAT queries ϕ1, . . . ϕ|x|c , and
answers a1, . . . , a|x|c (i.e. there exists a transcript) such that for all i, the following is true:

1. The SAT query ϕi is indeed the query posed by M given the transcript up to i.

2. The query ϕi is in the SAT language if and only if ai = 1.

Note that the “for all i” quantification is not really a quantifier, since there are only poly-
nomially many i, so we can just check them all in polynomial time. So we have only used
one quantifier for the transcript so far.

Clearly, (1) can be computed in polynomial time by simulating the Turing machine M .
However, (2) requires additional quantification, since it asks us to solve both SAT and the
complement problem UNSAT. This uses an existential quantifier and a universal quantifier.
But since the expressions within these quantifiers don’t depend on each other, we may move
them to the outside, so that the existential merges with the other existential quantifier, and
we have a Σ2 formula that is true if and only if x ∈ L.

As a side note, note that as an oracle, any class has the same power as its complement
class, since we may simply ask the oracle for the answer and negate it. Hence, we also have
Σ2 = NPco NP. And, we also have Π2 = (co NP)NP = (co NP)co NP, since co Σ2 = Π2 and
co(NPNP) = (co NP)NP.

Also, to get a similar conclusion for higher levels of the polynomial hierarchy, it can
be easily seen that the argument remains essentially the same, just with more quantifiers.
Hence, we have the following characterization of the polynomial hierarchy.

11-2

Theorem 11.2. Σk = NPΣk−1 and Πk = co NPΣk−1 .

This concludes our discussion of the polynomial hierarchy, but we will continue to see
how the polynomial hierarchy relates to other complexity classes as we define various other
complexity classes in future lectures.

11.2 Mathematical preliminaries to randomness

As we move into more modern and more advanced topics in complexity theory, we will
need to use more advanced mathematics. This section contains a terse list of mathematical
definitions and results that will be important for our study of randomness and beyond.
Much of it may be review, but some results are likely new.

11.2.1 Probability

We will not need measure theoretic probability (or even continuous probability) because for
a fixed input, algorithms cannot use more than a finite number of random bits.

Definition 11.3 (finite probability space). A finite probability space is a tuple (Ω,P) where
Ω is a finite set and P : 2Ω → [0,∞) is a function satisfying:

1. P(Ω) = 1

2. If E1, E2 ⊂ Ω are disjoint, then P(E1) + P(E2) = P(E1 ∪ E2).

For the rest of this section, let (Ω,P) be a finite probability space.

Proposition 11.4 (Union bound). Suppose E1, . . . , En ⊂ Ω. Then

P

(
n⋃
k=1

Ek

)
≤

n∑
k=1

P(Ek).

Proof. The proof follows by induction and the fact that one may write A ∪B as the union
of disjoint events A and B \ A, and the fact that one may write B as the union of disjoint
events B \A and B ∩A.

Definition 11.5 (random variable). A random variable is a function X : Ω→ R. We often
abuse notation and write X > k to mean {x ∈ Ω : X(x) > k} (likewise ≥, <, ≤, =).

Definition 11.6 (expectation). The expectation of a random variable X is the real number

E(X) =
∑
k∈R

k · P(X = k).

The notation is well-defined because there are finitely many k (in particular, at most |Ω|)
such that P(X = k) is non-zero.

Theorem 11.7 (Markov’s inequality). For any non-negative random variable X, we have

P(X ≥ kE(X)) ≤ 1

k
.

11-3

Proof. Note that E(X) ≥ aP(X ≥ a) for any a ≥ 0 by the definition. Hence, setting
a = kE(X), we get E(X) ≥ kE(X)P(X ≥ kE(X)), and dividing by kE(X) yields the result
that we want.

Theorem 11.8 (Chernoff bound). Let X1, . . . , Xn be independent indicator random vari-
ables with probability of success p. Then,

Pr

(∣∣∣∣X1 + · · ·+Xn

n
− p
∣∣∣∣ ≥ δ) ≤ 2e−2δ2n

Proof. This proof is rather long and tedious, so it is deferred to [3].

Markov’s inequality and the Chernoff bound will be crucial tools to help us bound the
probability of tail events. In particular, Markov’s inequality is a general but weak tool that
says the probability of exceeding the expectation by a certain multiplicative factor decreases
linearly by that factor. In contrast, the Chernoff bound makes the strong assumption that
the random variable is a sum of identical indicator random variables, and concludes that
the chance of deviating from its expectation decreases exponentially in both the error and
the number of indicator random variables.

11.2.2 Algebra

Definition 11.9 (field). A field is a tuple (F,+, ·) such that the operations + : F ×F → F
and · : F × F → F respect the usual associative, commutative, identity, inverse, and
distributive properties. A finite field is a field where F is a finite set.

Proposition 11.10. For any prime p, (Fp,+, ·) is a field, where Fp = {0, 1, . . . , p− 1} and
the operations are the normal operations mod p.

Proof. The only non-trivial part is the existence of multiplicative inverses. Let a ∈ Fp.
Note that gcd(a, p) = 1, so by the Euclidean algorithm there exists n,m ∈ Z such that
an+ pm = 1. But an+ pm ≡ an (mod p), so we may simply take a−1 = n.

Definition 11.11 (polynomial). A polynomial in n variables x1, . . . , xn over a field F is
sum of terms of the form axd11 · · ·xdnn , where a ∈ F and d1, . . . , dn ∈ N. We often denote
polynomials by p(x) or p(x1, . . . , xn), and the set of all n variable polynomials over F by
F [x1, . . . , xn]. The degree of a polynomial is the maximum value of d1 + · · · + dn over all
of its terms. Polynomials may be evaluated at points (a1, . . . , an) ∈ Fn by substituting the
point in for x1, . . . , xn and evaluating the expression.

Theorem 11.12 (Schwartz–Zippel lemma). Let p(x) ∈ F [x1, . . . , xn] be a polynomial in n
variables over the field F . Then for any finite subset S ⊂ F , if r1, . . . , rn are sampled from
S independently at random, then

P(p(r1, . . . , rn) = 0) ≤ deg p

|S|
.

Proof. The proof is by induction on n. For a complete write-up, see [5].

In particular, if F is a finite field, then it is difficult to hit a root of a polynomial by
randomly choosing points in the field. This critically important fact can be viewed as a

11-4

generalization of the fundamental theorem of algebra, and we will use it extensively in our
study of randomized algorithms.

Theorem 11.13 (Bertrand’s postulate). For every positive integer n, there exists a prime
in the interval [n, 2n].

Proof. The proof is elementary but long, see [4] for a proof.

Bertrand’s postulate will allow us to find finite fields of sufficiently large size for our
algorithms. In particular, it guarantees that if we just check every number from n to 2n by
brute force, we will find a prime, and this can trivially be done in time polynomial in n.

11.3 Introduction to randomized algorithms

Randomized algorithms form an exciting field in computer science because it turns out that
compared to deterministic algorithms, they are often faster, simpler to implement, more
parallelizable, and just as practical. The core idea is that by using randomness in our
algorithms, we can get algorithms that are correct not always, but almost always, and that
this is sufficient for many purposes. This is the area that we will study for the rest of the
lecture and for the next two lectures.

Note that randomness is not the same as nondeterminism. Whereas nondeterminism is
not an very practical thing to ask for, since real machines cannot really find the single correct
computation path by its own volition, randomness means that most computation paths are
correct, and real computers can select one of these correct paths with good probability using
thermal noise from the CPU or other sources of randomness.

Let us demonstrate the power of randomness with a quick example. Consider the problem
of verifying multiplication of two matrices in Fn×n, where F is a field. That is, given
A,B,C ∈ Fn×n, does AB = C? A deterministic solution to this problem would be to simply
perform the multiplication and check it, which would take O(n3) time with schoolbook
matrix multiplication, or around O(n2.37) time with the currently best known algorithms
[1]. However, with the power of randomness, we have the following:

Proposition 11.14. Matrix multiplication can be verified in O(n2) time to an accuracy of
1− 1

|F | if F is finite or 99% if F is infinite.

Proof. Consider the following algorithm: Pick x ∈ Fn randomly. Then output whether or
not ABx = Cx. Since matrix-vector multiplication takes O(n2) time, and the left hand
may be computed as A(Bx), this takes O(n2) time. For inputs where AB = C, the output
will always be correct, so it remains to show that for inputs where AB 6= C, the probability
that ABx = Cx is less than 1

|F | or 1
ε .

In other words, we are considering when (AB − C)x = 0. Because AB 6= C, some
component of (AB − C)x is a non-zero degree 1 polynomial. Then by the Schwarz-Zippel
lemma, the probability that we hit a root in that component is at most 1

|F| . The probability

of (AB − C)x = 0 (in all components) is hence also at most 1
|F| . If we take the field to be

infinite, we may simply choose a subset S ⊂ F of size |S| = 100 and take x ∈ Sn, and the
probability of failure is likewise 1

|S| = 1
100 , as we wanted.

11-5

Note that a key property of this algorithm is that the success probability does not depend
on the input. In other words, the success probability is at least 99% on all inputs! We could
have easily also changed the size of S to obtain even better success probabilities. This makes
randomized algorithms very practical, since in real life, we may be pretty satisfied with an
algorithm that is practically always right, even if it very occasionally is wrong. In the next
lecture, we will discuss more examples of randomized algorithms and begin to define and
understand the complexity classes that go along with them.

References

[1] J. Alman and V. V. Williams. A refined laser method and faster matrix multiplication,
2020.

[2] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1
– 22, 1976.

[3] Wikipedia contributors. Chernoff bound — Wikipedia, the free encyclopedia, 2020.

[4] Wikipedia contributors. Proof of bertrand’s postulate — Wikipedia, the free encyclope-
dia, 2020. [Online; accessed 10-December-2020].

[5] Wikipedia contributors. Schwartz–zippel lemma — Wikipedia, the free encyclopedia,
2020.

11-6

